Physics, asked by Irfan1729, 8 months ago

hiiiiii guys....... how to find out gravitational potential due to spherical shell??.... spam will be reported​

Answers

Answered by nirman95
73

Answer:

Let radius of shell be R .

Then at a distance of r > R :

 \int \: dV = \int \:  -  E \: dr

Putting the limits (coming from infinity to r )

  \displaystyle \: \int_{0}^{V} \: dV = \int_{\infty}^{r} \:  -  E \: dr

  \displaystyle \: =  >  \int_{0}^{V} \: dV = \int_{\infty}^{r} \:  -   \frac{kq}{ {r}^{2} }  \: dr

 =  > V =  \dfrac{kq}{r} .......(r > R)

Now for r = R , we can say :

 =  > V =  \dfrac{kq}{R} .......(r  =  R)

For r < R , we know that inside a spherical shell, there is no Electric Field Intensity.

  \displaystyle \: \int_{V_{c}}^{V} \: dV = \int_{R}^{r} \:  -  E \: dr

  \displaystyle \:  =  &gt; \int_{V_{c}}^{V} \: dV = \int_{R}^{r} \:  -  (0) \: dr

 =  &gt;  V = V_{c}

 =  &gt; V =  \dfrac{kq}{R} .......(r   &lt;   R)


nirman95: If you have any doubt regarding the integration, please feel free to contact me at my inbox
Answered by Saby123
104

</p><p>\huge{\tt{\pink{Hello!!!}}}

</p><p>\tt{\red{\underline {Finding \: Gravitational \: Potential \: Due \: To \: Spherical \: Shell \: - }}}

</p><p>\tt{\purple{Newton's \: Shell \: Theorem }}

</p><p>\tt{\green{Let\: the \: radius\: of \: the\:shell \:be\: R . }}

</p><p>\tt{\purple{Then \:at\: a \:distance\: of\: r \:&gt;\: R \: - }}

</p><p>\orange{\mathfrak {\int \: dV = \int \: - E \: dr∫dV=∫_Edr}}

Putting the limits (coming from infinity to r ).......

</p><p>\red{\mathfrak {\displaystyle \: \int_{0}^{V} \: dV = \int_{\infty}^{r} \: -}}

</p><p>\purple{\mathfrak {\displaystyle \: = &gt; \int_{0}^{V} \: dV = \int_{\infty}^{r} \: - \frac{kq}{ {r}^{2} } \: dr=&gt;∫ }}

</p><p>\tt{\orange {= &gt; V = \dfrac{kq}{r} .......(r &gt; R)}}

  • Now for r = R :

</p><p>\tt{\green{= &gt; V = \dfrac{kq}{R} .......(r = R)}}

For r < R , there is no Electric Field Intensity Inside A Spherical Shell....

</p><p>\orange {\mathfrak {\displaystyle \: \int_{V_{c}}^{V} \: dV = \int_{R}^{r} \: - E \: dr∫ }}

</p><p>\tt{\blue {\displaystyle \: = &gt; \int_{V_{c}}^{V} \: dV = \int_{R}^{r} \: - (0) \: dr=&gt;∫ }}

</p><p>\tt{\purple{= &gt; V = V_{c}=&gt;V=V }}

</p><p>\tt{\red{= &gt; V = \dfrac{kq}{R} .......(r &lt; R)}}

Similar questions