Math, asked by proudpahadi, 11 months ago

Hiiiiii !!!!!





Please answer this question ! it's urgent ! ​

Attachments:

Answers

Answered by rakshithabs10
6

Step-by-step explanation:

u refer above the picture...

i hope it will help u

please mark as brainliest answer

Attachments:
Answered by rajsingh24
75

QUESTION :-

  \rm\frac{sin \theta}{1 - cosec \theta}  +  \:  \frac{cosec \theta}{1 - sin \theta}  = 1 + sin \theta \:  + cosec \theta

SOLUTION :-

  \rm \implies \red {\underline{LHS:- }} \:   \:  \:  \frac{sin \theta(1 - sin \theta) + cosec \theta(1 - cosec \theta)}{(1 - cosec \theta) \:  \: (1 - sin \theta \: )}  \\   \rm \implies \:  \frac{sin\theta - sin {}^{2} \theta + cosec\theta - cosec {}^{2}\theta }{(1 - cosec {}^{2}\theta) \:  \: (1 - sin \theta)}  \\  \rm \implies \:  \frac{sin\theta(1 - sin\theta) + cosec\theta(1 - cosec\theta)}{(1 - cosec\theta) \:  \:   (1 - sin\theta)}   \\ \rm \implies \:  \frac{sin\theta \:  + cosec\theta  \: + \cancel{(1 - sin\theta)} \:  \:  \cancel{(1 - cosec\theta)}}{ \:  \cancel{(1 -  cosec\theta)} \:  \: \:  \cancel{(1 - sin\theta)} } \\ \rm \implies \: sin \theta \:  +  \: cosec\theta \:  + 1 \:  \\ \rm \implies \purple {\underline{RHS:- }} \:  \: .°. \: 1 + sin\theta\:  + cosec\theta \:  \\

\implies\green{\underline{\boxed{LHS =RHS}}}

SOME IDENTITIES RELATED TO TRIGONOMETRY.

1)\rm{ sin^2\theta + cos^2\theta= 1}

2)\rm{ 1 + cot^2\theta= cosec^2\theta }

3) \rm{1+tan^2\theta = sec^2\theta}

Similar questions