Math, asked by baadalagupta, 10 months ago

hiiiiiiiiiiiiiiii
plzz solve this ​

Attachments:

Answers

Answered by amitkumar44481
6

AnsWer :

5.

QuestioN :

The exact value of expression

 \tt tan \dfrac{ \pi}{20}  - tan \dfrac{3 \pi}{20}  + tan \dfrac{5 \pi}{20} - tan \dfrac{7 \pi}{20}   + tan \dfrac{9 \pi}{20} \:  is

SolutioN :

 \tt   : \implies tan \dfrac{  \cancel{180}}{ \cancel{20}}  - tan \dfrac{3  \times  \cancel{180}}{ \cancel{20}}  + tan \dfrac{5  \times  \cancel{180}}{ \cancel{20}} - tan \dfrac{7  \times  \cancel{180}}{ \cancel{20}}   + tan \dfrac{9  \times  \cancel{180}}{ \cancel{20}}

\tt   : \implies tan \: 9 - tan \: 27 + tan \: 45 - tan \: 63 + tan \: 81.

\tt   : \implies tan \: 9 - tan \: 27 + tan \: 45 - tan \: (90 - 27) + tan \: (90 - 9).

Apply formula.

  • tan ( 90 - theta ) = cot theta.
  • cot ( 90 - theta ) = tan theta.

\tt   : \implies tan \: 9 - tan \: 27 + tan \: 45 - cot \:  27 + cot \: 9.

Taking One sides tan 9° , cot 9° and tan 27° , cot 27°.

\tt   : \implies (tan \: 9  + cot \: 9)-  (tan \: 27 +cot  \: 27) +  tan \: 45.

Now, tan theta = Sin theta / cos theta.

\tt  : \implies  \Big( \frac{sin \: 9}{cos \: 9}   +   \frac{cos \: 9}{sin \: 9} \Big)-  \Big( \frac{sin \: 27}{cos \: 27}   +   \frac{cos \: 27}{sin \: 27}\Big) +  tan \: 45.

★ tan 45° = 1.

\tt  : \implies  \Big( \frac{{sin  }^{2}  9 +  {cos}^{2}9 }{sin9 \times cos  9} \Big)-  \Big( \frac{{sin  }^{2}27+  {cos}^{2}27 }{sin27 \times cos 27}\Big) + 1.

\tt  : \implies  \Big( \frac{1 }{sin9 \times cos  9} \Big)-  \Big( \frac{1 }{sin27 \times cos 27}\Big) + 1.

Let Multiple by 2.

\tt  : \implies  \Big( \frac{1 }{ \frac{2\Big(sin9 \times cos  9\Big)}{2}}\Big)-  \Big( \frac{1 }{ \frac{ 2\Big(sin27 \times cos 27\Big)}{2}}\Big) + 1.

\tt  : \implies  \Big( \frac{1 }{ \frac{\Big(sin18 \times cos  18\Big)}{2}}\Big)-  \Big( \frac{1 }{ \frac{ \Big(sin54 \times cos 54\Big)}{2}}\Big) + 1.

# Note :

  • Sin 18° = √5 - 1 /4.
  • Sin 54° = √5 + 1/4.

\tt  : \implies   \dfrac{2}{ \frac{ \sqrt{5} - 1 }{4} }  -  \dfrac{2}{ \frac{ \sqrt{5} + 1 }{4} }  + 1.

\tt  : \implies   \dfrac{8}{ \sqrt{5}  - 1}  -  \dfrac{8}{ \sqrt{5} + 1 }  + 1

\tt  : \implies   \dfrac{8 (\sqrt{5}  + 1) - 8( \sqrt{5} - 1) }{ (\sqrt{5}  - 1)( \sqrt{5} + 1) }  + 1

°•° ( a - b )( a + b ) = a² - b² .

\tt  : \implies   \dfrac{8 \sqrt{5}  + 8- 8\sqrt{5}  + 8}{ 5 - 1 }  + 1

\tt  : \implies    \dfrac{\cancel{16}}{\cancel4}  + 1

\tt  : \implies   4 + 1.

\tt  : \implies  5.

Similar questions