Math, asked by sanibsaifi, 1 year ago

hiw to prove theles theoram​

Answers

Answered by Anonymous
12

 \textbf{ \large{ \underline {  \: \underline{ \: Thales Theorem : \: } \: }}}

Thales Theorem or Basic Proportionality Theorem, the theorem states that line parallel to the one side of the triangle divides the other two sides proportionally.

 \textsf{ \underline {  \: \underline{  Given } \: }}

In a triangle ABC has a line drawn parallel to BC which cuts AB and AC at points P and Q respectively.

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \textsf{Refer the attachement}}

 \textsf{ \underline {  \: \underline{  To Prove : } \: }} \frac{ \textsf{AP}}{ \textsf{PB}}   =  \frac{ \textsf{AQ}}{ \textsf{AC}}

 \textsf{ \underline {  \: \underline{  Construction : } \: }} Let the point P divides AB in ratio of l : m where l and m are natural numbers. Divide AP in (l) and PB in (m) equal parts.

 \textsf{ \underline {  \: \underline{  Proof : } \: }} \\  \star AP and AQ are cut in l equal parts

Similarly,

\star PB and QC are cuts in m equal parts.

 \rightarrow \:  \frac{ \text{AP}}{ \text{PB}} =  \frac{ \text{l}}{ \text{m}}   \\ \rightarrow \:  \frac{ \text{AQ}}{ \text{QC}} =  \frac{ \text{l}}{ \text{m}}

Therefore,

 \frac{ \text{AP}}{ \text{PB}} =  \frac{ \text{AQ}}{ \text{QC}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed { \boxed{ \frac{ \text{AP}}{ \text{PB}} =  \frac{ \text{AQ}}{ \text{QC}} }}

Attachments:
Similar questions