Hiya!!!
IN FIGURE DIAGONALS ,AC AND BD OF QUADRILATERAL ABCD INTERSECT AT O SUCH THAT,OB=OD.
IF AB=CD,SHOW THAT
1. AREA OF (DOC)=AREA OF (AOB)
2.AREA OF (DCB)=AREA OF (ACB)
3.ABCD IS A PARALLELOGRAM.
hint:construction:draw DL PERPENDICULAR AC AND BM PERPENDICULAR AC.
SPAMSSSS WILL BE REPORTED.
ONLY MYSTERY ANSWERS BE MARKED BRAINLIEST ♥♥♥
Answers
------------------------------
Given
ABCD is a quadrilateral
OB = OD
AB = CD
To Prove
i) ar[DOC] = ar[AOB]
ii) ar[DCB] = ar[ACB]
iii) ABCD is a parallelogram
Construction
Draw Dl ⊥ AC and BM ⊥ AC
Proof
In ΔBOM and ΔDOL,
OB = OD [Given]
∠BMO = ∠DLO = 90°
∠BOM = ∠DOL [V.O.A]
∴ ΔBOM ≅ ΔDOL by AAS congruency.
ar[BOM] = ar[DOL] → 1
[Congruent figures have equal areas]
BM = DL [CPCT]
In ΔBAM and ΔDCL,
BM = DL [proved]
AB = CD [given]
∠BMA = ∠DLC = 90°
∴ ΔBAM ≅ ΔDCL by RHS congruency.
∠BAM = ∠DCL [CPCT]
AB║DC [Alternate interior anls are equal.]
ar[BAM] = ar[DCL] → 2
i) Adding 1 and 2 we get,
ar[BOM] + ar[BAM] = ar[DOL] + ar[DCL]
ar[AOB] = ar[DOC]
ii) ar[AOB] = ar[DOC]
Adding BOC on both sides.
ar[AOB] + ar[BOC] = ar[DOC] + ar[BOC]
ar[ACB] = ar[DCB]
iii) AB = CD [given]
AB║CD [proved]
⇒ ABCD is a parallelogram.
[One pair of opposite sides are equal and parallel]
Hence everything is Proved!
------------------------------
Hope it Helps!
@Tomboyish44
Step-by-step explanation:
Given ABCD is a quadrilateral with AB = CD.Diagonals AC and BD intersect at O such that OB = OD.
Construction: Draw DN ⊥ AC and BM ⊥ AC.
Proof:
In ΔOND and ΔOMB,
⇒ OD = OB {Given}
⇒ ∠DON = ∠BON {vertically opposite angles}
⇒ ∠OND = ∠OMB {Each = 90°}
⇒ ΔOND ≅ ΔOMB
DN = BM {c.p.c.t}
ON = OM
In ΔDCN and ΔBAM,
DN = BM
DC = AB {given}
⇒ ∠CND = ∠AMB {Each = 90°}
⇒ ΔDCN ≅ ΔBAM {RHS congruence}
⇒ CN = AM {c.p.c.t}
ON = OM
⇒ CN + ON = AM + OM
⇒ OC = OA
In ΔDOC and ΔBOA,
⇒ OD = OB {given}
⇒ DC = AB {given}
⇒ OC = OA {proved above}
⇒ ΔDOC ≅ ΔBOA
⇒ ar(ΔDOC) ≅ ar(ΔBOA)
⇒ ar(ΔDOC) = ar(ΔAOB)
(ii) Adding ar(ΔOCB) on both sides, we get
⇒ ar(ΔDOC) + ar(ΔOCB) = ar(ΔAOB) + ar(ΔOCB)
⇒ ar(ΔDCB) = ar(ΔACB)
(iii) In ABCD,
OB = OD {given}
OC = OA {proved}
The diagonals AC and BD of Quad.ABCD bisect each other.
⇒ ABCD is a parallelogram.
Hope it helps!