Math, asked by trilochana38, 10 months ago

hlo answer this and take 40 points the numerator of a fraction is 6 less than the denominator. if 3 is added to the numerator, the fraction is equal to 2\3,find the original fraction ​

Answers

Answered by BrainlyPopularman
30

GIVEN :

The numerator of a fraction is 6 less than the denominator.

• If 3 is added to the numerator, the fraction is equal to ⅔ .

TO FIND :

Original fraction = ?

SOLUTION :

• Let the denominator 'x' .

• So , Numerator = x - 6

▪︎ According to the question –

  \\ \implies\sf \dfrac{(x - 6) + 3}{x + 3}  =  \dfrac{2}{3}  \\

  \\ \implies\sf \dfrac{x - 3}{x + 3}  =  \dfrac{2}{3}  \\

  \\ \implies\sf 3(x - 3)= 2(x + 3) \\

  \\ \implies\sf 3x - 9= 2x + 6 \\

  \\ \implies\sf 3x - 2x= 9+ 6 \\

  \\ \implies\sf x= 9+ 6 \\

  \\ \implies \large{ \boxed{\sf x=15 }}\\

• Hence –

  \\ \implies \sf \: original \:  \: fraction =  \dfrac{15 - 6}{15} \\

  \\ \implies \large{ \boxed{ \sf \: original \:  \: fraction =  \dfrac{9}{15}}} \\

Answered by sadhnasing1997
17

Answer:

Suppose denominator be = x

and numerator = x - 6

 \frac{(x \:  -  \: 6 \: ) \:  +  \: 3 \: }{(x \:  +  \: 3}   = \frac{2}{3}

 \frac{x \:  -  \: 3}{x \:  +  \: 3}  =  \frac{2}{3}

3(x - 3) = 2(x \:  +  \: 3)

3x \:  -  \: 9 \:  = 2x \:  +  \: 6 \:

3x - 2x = 9 + 6

x \:  =  \: 9 \:  +  \: 6.

x = 15

the \: orignal \: fraction \:  =  \frac{15 - 6}{15}

the \: orignal \: fraction \:  =  \frac{9}{15} .

Similar questions