Math, asked by buddhiprasadlamsal1, 1 month ago

Hlo friend plz help me​

Attachments:

Answers

Answered by Anonymous
22

Answer:

Simplify :

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div \bigg(10 - \overline{8 - 2 } \bigg)\bigg\} \bigg]}}}}

Simplifying vinculum bar

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div \bigg(10 - \overline{8 - 2 } \bigg)\bigg\} \bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div \bigg(10 - 6\bigg)\bigg\} \bigg]}}}}

Simplifying parentheses brackets

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div \bigg(10 - 6\bigg)\bigg\} \bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div 4\bigg\} \bigg]}}}}

Simplifying curly brackets

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{16 \div 4\bigg\} \bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{ \dfrac{16}{4} \bigg\} \bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \bigg\{ \cancel{\dfrac{16}{4}} \bigg\} \bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \times 4\bigg]}}}}

Simplifying square brackets

{:\implies{\small{\sf{18 \div 16 + \bigg[8 \times 4\bigg]}}}}

{:\implies{\small{\sf{18 \div 16 + 32}}}}

According to BODMAS rule simplifying devision

{:\implies{\small{\sf{18 \div 16 + 32}}}}

{:\implies{\small{\sf{ \dfrac{18}{16}  + 32}}}}

{:\implies{\small{\sf{{\cancel{\dfrac{18}{16}}  + 32}}}}}

{:\implies{\small{\sf{ 1.125 + 32}}}}

Now, according to BODMAS rule simplifying addition

{:\implies{\small{\sf{ 1.125 + 32}}}}

{:\implies{\small{\sf{33.125}}}}

{:\implies{\underline{\boxed{\pmb{\sf{Answer = 33.125}}}}}}

∴ The answer is 33.125.

\begin{gathered}\end{gathered}

Learn More :

☼ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • ↠ B - Brackets,
  • ↠ O - Order of powers or roots,
  • ↠ D - Division,
  • ↠ M - Multiplication 
  • ↠ A - Addition
  • ↠ S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

☼ BODMAS RULE :

↝ First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ↠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}
  • ↠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}
  • ↠ {\rm{({a}^{m})^{n} = {a}^{mn}}}
  • ↠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}
  • ↠ {\rm{{a}^{0} = 1}}
  • ↠ {\rm{{a}^{ - m} = {1/a}^{m}}}
  • ↠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions