Math, asked by jennisinu2004il, 10 months ago

hlo guys please solve this question . it's a urgent qno.27​

Attachments:

Answers

Answered by terminator10
4

Answer:

STEP BY STEP EXPLANATION GIVEN IN THE ABOVE PIC

Attachments:
Answered by vdddd4
2

yur \: answer \\  \\ y =  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \\  \\ differentiate \:  \: both \:  \: sides \:  \: w.r.t \:  \: x \\   \\  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }  +  \frac{d( \frac{1}{ \sqrt{x} } )}{dx}  \\  \\  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }   -  \frac{x {}^{ \frac{ - 3}{2} } }{2}  \\  \\  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }  -  \frac{1}{2x \sqrt{x} }  \\  \\  \frac{dy}{dx}  =  \frac{ \sqrt{x} }{2x}   -  \frac{1}{2x \sqrt{x} }  \\  \\   \frac{dy}{dx}  =  \frac{1}{2x} ( \sqrt{x}  -  \frac{1}{ \sqrt{x} } ) \\  \\ 2x \frac{dy}{dx}  = (2 \sqrt{x}  - ( \sqrt{x}   +  \frac{1}{ \sqrt{x} } )) \\  \\ 2x \frac{dy}{dx}  = (2 \sqrt{x}  - y) \\  \\ 2x \frac{dy}{dx}  + y = 2 \sqrt{x}

Similar questions