Math, asked by RajvanshiC, 8 months ago

Hlo guyz..Needed step by step xplanation...

Attachments:

Answers

Answered by BrainlyTornado
9

QUESTION:

\sf{If \  {y = \dfrac{sin \ x}{1 +  \dfrac{cos \ x}{1 +   \dfrac{sin \ x}{1 +  \dfrac{sin \ x}{1 +  \dots \ \dots \ \dots +  \infty} } }} }}

\sf{{prove \ that \ \dfrac{dy}{dx}= \dfrac{(1+y)cos \ x}{1+2y+cos \ x-sin\ x}}}

GIVEN:

\sf{ {y = \dfrac{sin \ x}{1 +  \dfrac{cos \ x}{1 +   \dfrac{sin \ x}{1 +  \dfrac{sin \ x}{1 +  \dots \ \dots \ \dots +  \infty} } }} }}

TO PROVE:

\sf {\dfrac{dy}{dx}= \dfrac{(1+y)cos \ x}{1+2y+cos \ x-sin\ x}}

EXPLANATION:

 \tt{{y = \dfrac{sin \ x}{1 +  \dfrac{cos \ x}{1 +   \dfrac{sin \ x}{1 +  \dfrac{sin \ x}{1 +  \dots \ \dots \ \dots +  \infty} } } }}}

 \tt{{y = \dfrac{sin \ x}{1 +  \dfrac{cos \ x}{1 +y} } }}

 \tt{{y = \dfrac{sin \ x}{\dfrac{1 + y + cos \ x}{1 +y} }} }

 \tt{{y = \dfrac{sin \ x(1 + y)}{1 + y + cos \ x} }}

 \tt{{y +  {y}^{2} + ycos \ x  = sin \ x +ysin \ x }}

Let us split the terms.

\tt{Take \  y +  {y}^{2} + ycos \ x }

Differentiate w.r.t x

\red{\bigstar\boxed{ \bold{ \gray{ \dfrac{d}{dx}  {x}^{2}  = 2x}}}}

\blue{\bigstar\boxed{ \bold{ \gray{\dfrac{d}{dx} uv  = uv' + vu'}}}}

  \orange{\bigstar\boxed{ \bold{ \gray{\dfrac{d}{dx}cos \ x =  - sin \ x}}}}

 \tt{ {\dfrac{dy}{dx} +  2y \dfrac{dy}{dx} +  \dfrac{dy}{dx} cos \ x  + y \dfrac{d}{dx} cos \ x}}

\tt{\dfrac{dy}{dx}(1 + 2y + cos \ x)  - y sin \ x}

 \tt{Now \ take \   = sin \ x +ysin \ x}

Differentiate w.r.t x

 \purple{\bigstar\boxed{ \bold{ \gray{\dfrac{d}{dx} sin \ x = cos \ x}}}}

\pink{\bigstar\boxed{ \bold{ \gray{\dfrac{d}{dx} uv  = uv' + vu'}}}}

 \tt{\dfrac{d}{dx} sin \ x +y \dfrac{d}{dx} sin \ x  + sin \ x\dfrac{dy}{dx}}

\tt{cos \ x +y  cos \ x + sin \ x\dfrac{dy}{dx}}

Now equate the terms

dy/dx(1 + 2y + cos x) - y sin x = cos x + y cos x + sin x(dy/dx)

dy/dx(1 + 2y + cos x) - sin x(dy/dx) = cos x (1 + y ) + y sin x

dy/dx(1 + 2y + cos x - sin x) = cos x (1 + y) + y sin x

 \tt{\dfrac{dy}{dx}= \dfrac{(1+y)cos \ x}{1+2y+cos \ x-sin\ x}}

HENCE PROVED.

Similar questions