Math, asked by nisha1456, 1 year ago

Hlo...✌

⭐If ax^2 + bx + c = 0
Prove ➡ x = -b + √b^2-4ac /2a
➡ x= -b - √b^2 - 4ac /2a

⏩ .......No Spam....... ⏪​

Answers

Answered by Anonymous
19

ax^2+bx+c=0

Multiply both sides by a :

\implies a^2x^2+abx+ac=0

Transpose ac to the other side :

\implies a^2x^2+abx=-ac

Add b²/4 on both sides :

\implies a^2x^2+abx+\frac{b^2}{4}=\frac{b^2}{4}-ac

Perfect square on the right hand side :

\implies a^2x^2+2\times a\times \frac{b}{2}\times x+\frac{b^2}{4}=\frac{b^2}{4}-ac

\implies (ax+\frac{b}{2})^2=\frac{b^2-4ac}{4}

Take square root both sides :

\implies ( ax+\frac{b}{2})=\frac{\pm \sqrt{b^2-4ac}}{2}

Transpose b/2 to the other side :

\implies ax=\frac{-b}{2}+\frac{\pm\sqrt{b^2-4ac}}{2}

\implies ax=\frac{-b\pm\sqrt{b^2-4ac}}{2}

\implies x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Hence it is proved that :

Either\:x=\frac{-b+\sqrt{b^2-4ac}}{2a}\\\\Or\:x=\frac{-b-\sqrt{b^2-4ac}}{2a}


nisha1456: Awesome answer bro....☺✌❤...
Anonymous: thanks ❤️ :)
sakshi7048: gr8 answer
Anonymous: thank u :)
sakshi7048: this question is of which standard ??
Anonymous: For all std..
Anonymous: must be 8th standard because quadratic equation begins at 8 th .. :)
sakshi7048: =_=
sakshi7048: okk
Answered by Anonymous
18

\underline{\underline{\bold{Question:}}}

\bold{If\quad\:ax^2+bx+c=0\quad\:then}\\\\\\\bold{Prove\:that\qquad\:x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}.}

\underline{\bold{Solution:}}

Given :

\bold{ax^2+bc+c=0}\\\\\\\underline{\bold{Dividing\:the\;whole\:equation\:by\:a.}}\\\\\\\implies{\bold{\dfrac{ax^2}{a}+\dfrac{bx}{a}+\dfrac{c}{a}=\dfrac{0}{a}}}\\\\\\\implies{\bold{x^2+\dfrac{bx}{a}+\dfrac{c}{a}=0}}\\\\\\\underline{\bold{Adding\:both\;side\:the\:square\:of\:half\:of\:coefficient\:of\:x.}}\\\\\\\implies{\bold{x^2+(\dfrac{b}{2a})^2+\dfrac{bx}{a}+\dfrac{c}{a}=(\dfrac{b}{2a})^2}}\\\\\\\implies{\bold{x^2+(\dfrac{b}{2a})^2+2*x*\dfrac{b}{2a}=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}}

\boxed{\bold{(a+b)^2=a^2+2ab+b^2}}\\\\\\\implies{\bold{(x+\dfrac{b}{2a})^2=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}}\\\\\\\implies{\bold{(x+\dfrac{b}{2a})^2=\dfrac{b^2-4ac}{4a^2}}}\\\\\\\implies{\bold{x+\dfrac{b}{2a}=\dfrac{\pm\:\sqrt{b^2-4ac}}{2a}}}\\\\\\\implies{\bold{x=-\dfrac{b}{2a}+\dfrac{\pm\:\sqrt{b^2-4ac}}{2a}}}\\\\\\\implies{\bold{x=\dfrac{-b\pm\:\sqrt{b^2-4ac}}{2a}}}\\\\\\\boxed{\boxed{\bold{x=\dfrac{-b\pm\:\sqrt{b^2-4ac}}{2a}}}}


sakshi7048: awesome answer ✌✌✌
AdorableAstronaut: #Atti_Sundar ☺✌
nisha1456: Nice answer bro.....❤✌
Similar questions