HLO MATES
please ANS THIS Question.that is in the attachment....
best ans will be marked as brainleist..
☺☺☺☺☺
Attachments:
Answers
Answered by
4
(15).
Let the sum be 'x'.
Given, Time = 3 years, R = 15%.
(i)
We know that S.I = PRT/100
= (x * 15 * 3)/100
= 45x/100.
(ii)
We know that CI = P(1 + r/100)^n - P
= x(1 + 15/100)^3 - x
= (12167x/8000) - x
= 4167x/8000.
Now,
Given Difference between SI and CI is 283.50.
⇒ (4167x/8000) - (45x/100) = 283.50
⇒ (4167x/8000) - (9x/25) = 283.50
⇒ 4167x - 3600x = 2268000
⇒ 567x = 2268000
⇒ x = 4000.
Therefore, the sum is 4000.
Hope this helps!
siddhartharao77:
:-)
Answered by
3
let the required sum be ' p '
Given , rate = 15 % p.a , time = 3 yrs
Find the simple interest :
----------------------------------
simple interest = ( p × r × t ) / 100
= (p × 15 × 3 )/ 100 = 45p / 100
Find the amount :
------------------------
amount = p [ 1 + ( r / 100 ) ]^t
amount = p [ 1 + ( 15/ 100 ) ]^3
amount = p ( 115 / 100 )^3
= p ( 23 / 20 )^3
= p ×( 23× 23× 23 )/ 20 × 20 ×20
= 12167p / 8000
Find the C.I :
-----------------
compound interest = amount - principal
C.I = (12167p / 8000 ) - p
C.I = (12167p - 8000p) / 8000
= ₹4167p /8000
Given , difference = ₹ 283.50
difference = C.I - S.I
283.50 = (4167p/8000) - ( 45p /100 )
283.50 × 800000 = ( 416700p -360000p )
226800000 = 56700p
2268000 = 567p
p = 2268000 ÷ 567 => p = ₹ 4000
therefore , the required sum = ₹4000
Answer : sum = ₹4000
------------------------------------------------------
Given , rate = 15 % p.a , time = 3 yrs
Find the simple interest :
----------------------------------
simple interest = ( p × r × t ) / 100
= (p × 15 × 3 )/ 100 = 45p / 100
Find the amount :
------------------------
amount = p [ 1 + ( r / 100 ) ]^t
amount = p [ 1 + ( 15/ 100 ) ]^3
amount = p ( 115 / 100 )^3
= p ( 23 / 20 )^3
= p ×( 23× 23× 23 )/ 20 × 20 ×20
= 12167p / 8000
Find the C.I :
-----------------
compound interest = amount - principal
C.I = (12167p / 8000 ) - p
C.I = (12167p - 8000p) / 8000
= ₹4167p /8000
Given , difference = ₹ 283.50
difference = C.I - S.I
283.50 = (4167p/8000) - ( 45p /100 )
283.50 × 800000 = ( 416700p -360000p )
226800000 = 56700p
2268000 = 567p
p = 2268000 ÷ 567 => p = ₹ 4000
therefore , the required sum = ₹4000
Answer : sum = ₹4000
------------------------------------------------------
Similar questions
Biology,
7 months ago
World Languages,
7 months ago
Math,
1 year ago
Biology,
1 year ago
Math,
1 year ago