Math, asked by RajvanshiC, 3 months ago

hlo..step by step (integration)​

Attachments:

Answers

Answered by iamsumanyes
2

Hey mate, here is your AnsweR,

Question :

  •  \:  \sf \int \frac{3x + 1}{ \sqrt{5 - 2x - x {}^{2} } } dx \\

Step by step Explanation :

 \bf  \underbrace{ \pmb{Problem \:  : }} \\\\\   \bull \:  \: \:  \sf \int \frac{3x + 1}{ \sqrt{5 - 2x - x {}^{2} } } dx \\

➠ \:  \:  \tt \int \bigg( -  \frac{3( - 2x - 2)}{2 \sqrt{ - x {}^{2} - 2x + 5 } }  -  \frac{2}{ \sqrt{ - x {}^{2} - 2x + 5 } } \bigg) \text{dx} \\\\\ ➠ \:  \: \tt3 \int \frac{x + 1}{ \sqrt{ - x {}^{2} - 2x + 5 } } dx - 2 \int \frac{1}{ \sqrt{ - x {}^{2}  - 2x + 5} } \text dx

\bf  \underbrace{ \pmb{Now \:Solving \:  :  }} \\\\\   \bull \:  \: \:  \sf \int \frac{x + 1}{ \sqrt{ - x {}^{2}  - 2x + 5} } dx \\

 \tt➥ \:  \:  -  \frac{1}{2}  \int \frac{1}{ \sqrt{u} } \text du \\\\\  \tt➥ \:  \:2 \sqrt{u}

\bf  \underbrace{ \pmb{ Plug \: in \: solved \: integrals\:  :  }} \\\\\   \bull \:  \: \:  \sf -  \frac{1}{2}  \int \frac{1}{ \sqrt{u} }du  \\

 \tt➲ \:  \:  -  \sqrt{ - x { }^{2} - 2x + 5  }  \\

\bf  \underbrace{ \pmb{Now \:Solving \:  :  }} \\\\\   \bull \:  \: \:  \sf \int \frac{  1}{ \sqrt{ - x {}^{2}  - 2x + 5} } dx \\

➯ \:  \int \frac{1}{ \sqrt{6 - (x + 1) {}^{2} } }  \text {dx} \\\\\   \: \tt➯ \:  \int \frac{ \sqrt{6} }{ \sqrt{6 - 6u{}^{2} } }  \text {dx} \\\\\   \: \tt➯\int \frac{1}{ \sqrt{1 - u {}^{2} } }  \\\\\   \: \tt➯ \text { \: arcsin(u)}\\\\\ \tt➯ { \text { \: arcsin} \bigg( \frac{x + 1}{ \sqrt{6} }  \bigg)}

\bf  \underbrace{ \pmb{ Plug \: in \: solved \: integrals\:  :  }} \\\\\   \bull \:  \: \:  \sf3 \int \frac{x + 1}{ - x {}^{2}  - 2x + 5}  \text{dx} - 2 \int \frac{1}{ \sqrt{ - x {}^{2}  - 2x + 5} }  \text{dx} \\

✰\:\: \underline{ \underline{ \boxed {\frak{➣ \:  \:{  - 2 \text{arcsin} \bigg( \frac{x + 1}{ \sqrt{6} }  \bigg) - 3 \sqrt{ - x {}^{2} - 2x + 5 }  +  \bf{C}}}}}}\:\:✰

Please mark my answer as brainliest answer.

Similar questions