Math, asked by riddhi2692, 10 months ago

hloo....
plzz answer this question..
find the coordinates of point R on the line segment joining the pts. (-1,3) and Q(2,5) such that PR=3/5PQ​

Answers

Answered by Anonymous
15

Answer :

The coordinates of R is ( 4/5 , 21/5)

Given :

  • The points are P(-1 , 3) and Q(2 , 5)
  • The point R on the line PQ divides PQ such that PR= 3/5PQ

To Find :

  • The coordinates of R

Formula to be used :

Section formula : (x₁ , y₁) and (x₂ , y₂) are two points and a point (x , y) divides the line joining these points in the ration m : n then

 \sf{x =  \dfrac{ mx_{2}  + nx_{1}}{m + n} }

 \sf{y =  \dfrac{my_{2} + ny_{1}  }{m + n} }

Solution :

From a given condition :

 \sf{PR =  \dfrac{3}{5} \times PQ } \\  \implies \sf{5PR} = 3PQ

Now we have :

 \implies \sf{3PQ = 3PR + 3QR}  \\    \implies\sf 5PR = 3PR + 3QR\\\implies \sf 3QR = 2PR\\\implies \sf{QR =\frac{2}{3}PR }

So ratio is :

 \sf \dfrac{PR }{QR} =  \dfrac{PR}{ \dfrac{2}{3} PR}  \\  \implies\sf \dfrac{PR }{QR} = \dfrac{3}{2}

Now using the section formula to find coordinates of R .

Consider R( x , y)

  \sf{x =  \dfrac{(2 )\times 3 + ( - 1) \times 2}{3 + 2} } \\ \\   \implies \sf{x =  \dfrac{6 - 2}{5} } \\  \\  \implies \sf{x =  \dfrac{ 4}{5} }

and now for Y - co-ordinate

 \sf \implies y =  \dfrac{( 5) \times 3 + (3) \times 2}{3 + 2}   \\ \\  \implies \sf{y =  \dfrac{15 +6 }{5} } \\  \\  \implies \sf{y =  \dfrac{21}{5} }

Attachments:
Similar questions