Math, asked by Nereida, 1 year ago

❤ĀHØŁĂ BŘĀÏÑŁĪÀǧ❤

CLASS 10...

Solve by substitution method :-

2(ax - by) + a + 4b = 0
and
2(bx + ay) + b - 4a = 0

COME ON ....WRONG NHI HONA CHAHIYE...


✨ALL THE BEST✨


⭕FOLLOW ME⭕

Answers

Answered by Anonymous
10

Answer:

x = - 1/2

y = 2

Explanation :

Refer the attached picture.

Attachments:
Answered by Anonymous
18

SOLUTION ☺️

The given system of Equation:

 =  >  2(ax - by) + a + 4b = 0.....(1) \\  =  > 2(bx + ay) + b - 4b = 0......(2) \\  =  > now \: from \: (1) \: we \: get \\  =  > 2ax - 2by =  - 4b - a \\  =  > 2ax = 2by - 4b - a \\  =  > x =  \frac{2by - 4b - a}{2a} .....(3) \\  =  > substituting \: the \: value \: of \: x \: from \: (3) \: in \: (2) \: we \: get \\  =  > 2b( \frac{2by - 4b - a}{2a} ) + 2ay = 4a - b \\  =  >  \frac{2b {}^{2} y - 4b {}^{2} - ab }{a}  + 2ay = 4a - b \\  =  > ( \frac{2b {}^{2} }{a }  + 2a)y -  \frac{4b {}^{2} }{a}  - b = 4a - b \\  =  > ( \frac{2a {}^{2} + 2b {}^{2}  }{a} )y = 4a +  \frac{4b {}^{2} }{a}  \\  =  > ( \frac{2a {}^{2}  + 2b {}^{2} }{a} )y = ( \frac{4a {}^{2}4b {}^{2}  }{a} ) \\  =  > 2(a {}^{2}  + b {}^{2} )y = 4(a {}^{2}  + b {}^{2} ) \\  =  > 2y = 4 \\  =  > y = 2 \\  \\   =  > now \: substituting \: the \: value \: of \: y \: in \: (3) \: we \: get \\   =  > x =  \frac{2b \times 2 - a - 4b}{2a}  =  \frac{4b - a - 4b}{2a}  \\  =  >  -  \frac{1}{2}  \\  =  > so \: x =    - \frac{1}{2}  \: and \: y \:  = 2

hope it helps ✔️❣️


mahisinghmaurya: hi
Nereida: ❎NO COMNENTS❎
Nereida: hmmmm.....I think I seem funny
Anonymous: NO COMMENTS. ❌
Anonymous: Wth Stop otherwise, I have to report the answer. Got it
Similar questions