Math, asked by priya9531, 1 year ago

hola!!

answer it with clear explanation....​

Attachments:

Answers

Answered by Anonymous
6

Refer to the attached file :)

Attachments:
Answered by Anonymous
61

\large{\underline{\underline{\mathfrak{\pink{\sf{Prove\:here-}}}}}}.

\bold{\frac{p^2-1}{p^2+1}\:=\:sin\theta}.

\large{\underline{\underline{\mathfrak{\green{\sf{Given\:here-}}}}}}.

\:Sec\theta \:+\:tan\theta\:=\:p..................(1).

➡First find here.

\implies\bold{\red{\frac{p^2-1}{p^2+1}}}.

➡Keep values by (1).

\implies\fr{\frac{(\:Sec\theta\:+\:tan\theta)^2\:-\:1}{(\:Sec\theta\:+\:tan\theta)^2\:+\:1}}.

\implies\fr{\frac{(\:Sec\theta\:+\:tan\theta)^2\:-\:(\:sec^2\theta\:-\:tan^2\theta)}{(\:Sec\theta\:+\:tan\theta)^2\:+\:(\:Sec^2\theta\:-\:tan^2\:theta)}}.

\implies\fr{\frac{(\:sec\theta\:+\:tan\theta)\:(\:Sec\theta\:+\:tan\theta)\:-\:(\:sec\theta\:-\:tan\theta)}{(\:sec\theta\:+\:tan\theta)\:(\:Sec\theta\:+\:tan\theta)\:+\:(\:sec\theta\:-\:tan\theta)}}.

\implies\fr{\frac{(\:sec\theta\:+\:tan\theta)\:-\:(\:Sec\theta\:-\:tan\theta)}{(\:Sec\theta\:+\:tan\theta)\:+\:(\:Sec\theta\:-\:tan\theta)}}.

\implies\fr{\frac{\:Sec\theta\:+\:tan\theta\:-\:Sec\theta\:+\:tan\theta}{\:sec\theta\:+\:tan\theta\:+\:Sec\theta\:-\:tan\theta)}}].

\implies\fr{\frac{\:2tan\theta}{\:2sec\theta}}.

\implies\fr{\frac{\:tan\theta}{\:sec\theta}}.

\implies\fr{\frac{\frac{\:sin\theta}{\:cos\theta}}{\frac{1}{\:Cos\theta}}}.

\implies\fr{\frac{\:sin\theta}{\:Cos\theta}\:*\:Cos\theta}.

\implies\bold{\:Sin\theta}.

__________________

#ANSWERWITHQUALITY & #BAL

_______________________

Similar questions