Math, asked by snehaprajnaindia204, 3 months ago

꧁ HOLA BRAINLIANS ꧂
꧁ Qᴜᴇsᴛɪᴏɴ ꧂

 \frac{lim}{x -  > 0}  \:  \:  \frac{cos \: ax \:  -  \: cos \: bx}{cos \: cx \:  -  \: cos \: dx}
__
SOLVE IT PLEASE ​

Attachments:

IND21: it was not in correct manner but I tried it
snehaprajnaindia204: just stop giving plagiarized answers
IND21: oh miss you also don't give all the answer by your own thinking
IND21: so stop pointing me out
snehaprajnaindia204: ohhk
StormEyes: Please stop with your irrelevant comments pal.
snehaprajnaindia204: Just stop commenting here

Answers

Answered by StormEyes
6

\sf \Large Solution!!

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}

\sf \large As\:we\:know

\sf \to \cos A-\cos B=-2\sin \bigg(\dfrac{A+B}{2}\bigg)\sin \bigg(\dfrac{A-B}{2}\bigg)

\sf \large So,

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{-2\sin \bigg(\dfrac{a+b}{2}x\bigg)\sin \bigg(\dfrac{a-b}{2}x\bigg)}{-2\sin \bigg(\dfrac{c+d}{2}x\bigg)\sin \bigg(\dfrac{c-d}{2}x\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\dfrac{\sin \bigg(\dfrac{a+b}{2}x\bigg)}{\bigg(\dfrac{a+b}{2}x\bigg)}\times \bigg(\dfrac{a+b}{2}x\bigg)\times \dfrac{\sin \bigg(\dfrac{a-b}{2}x\bigg)}{\bigg(\dfrac{a-b}{2}x\bigg)}\times \bigg(\dfrac{a-b}{2}x\bigg)}{\dfrac{\sin \bigg(\dfrac{a+b}{2}x\bigg)}{\bigg(\dfrac{c+d}{2}x\bigg)}\times \bigg(\dfrac{c+d}{2}x\bigg)\times \dfrac{\sin \bigg(\dfrac{c-d}{2}x\bigg)}{\bigg(\dfrac{c-d}{2}x\bigg)}\times \bigg(\dfrac{c-d}{2}x\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(1)\bigg(\dfrac{a+b}{2}\bigg)\bigg(\dfrac{a-b}{2}\bigg)(1)}{(1)\bigg(\dfrac{c+d}{2}\bigg)(1)\bigg(\dfrac{c-d}{2}\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{4}\times \dfrac{4}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}

\sf \bold{\therefore \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}=\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}}

Thanks for asking!! :)

Answered by Anonymous
3

\sf \Large Solution!!

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}

\sf \large As\:we\:know

\sf \to \cos A-\cos B=-2\sin \bigg(\dfrac{A+B}{2}\bigg)\sin \bigg(\dfrac{A-B}{2}\bigg)

\sf \large So,

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{-2\sin \bigg(\dfrac{a+b}{2}x\bigg)\sin \bigg(\dfrac{a-b}{2}x\bigg)}{-2\sin \bigg(\dfrac{c+d}{2}x\bigg)\sin \bigg(\dfrac{c-d}{2}x\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\dfrac{\sin \bigg(\dfrac{a+b}{2}x\bigg)}{\bigg(\dfrac{a+b}{2}x\bigg)}\times \bigg(\dfrac{a+b}{2}x\bigg)\times \dfrac{\sin \bigg(\dfrac{a-b}{2}x\bigg)}{\bigg(\dfrac{a-b}{2}x\bigg)}\times \bigg(\dfrac{a-b}{2}x\bigg)}{\dfrac{\sin \bigg(\dfrac{a+b}{2}x\bigg)}{\bigg(\dfrac{c+d}{2}x\bigg)}\times \bigg(\dfrac{c+d}{2}x\bigg)\times \dfrac{\sin \bigg(\dfrac{c-d}{2}x\bigg)}{\bigg(\dfrac{c-d}{2}x\bigg)}\times \bigg(\dfrac{c-d}{2}x\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(1)\bigg(\dfrac{a+b}{2}\bigg)\bigg(\dfrac{a-b}{2}\bigg)(1)}{(1)\bigg(\dfrac{c+d}{2}\bigg)(1)\bigg(\dfrac{c-d}{2}\bigg)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{4}\times \dfrac{4}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}

\sf \bold{\therefore \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}=\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}}

Thanks for asking!! :)

Step-by-step explanation:

u had 3k answers r u getting to in-box plz tell

Similar questions