Math, asked by Anonymous, 1 month ago

Hola brainlians ! Todays Question ..

If A+B = 135° then,

\sf\dfrac{tanA .tanB }{(1+tanA)(1+tanB)} = ?

____________________________

Hint :- answer is 1/2




No spamming..Pls help me​

Answers

Answered by kousikab2005
2

Answer:

here it is .. but I got 1 as a answer . if you guys found any mistakes with mine pls comment. thanks

Attachments:
Answered by Anonymous
56

Answer:

Given :

\leadsto \sf A\: +\: B\: = 135^{\circ}

To Find :-

 \leadsto \sf What\: is\: the\: value\: of\: \sf \dfrac{tanA . tanB}{(1 + tanA)(1 + tanB)}\\

Solution :-

 \implies \sf A + B =\: 135^{\circ}

Then, we can write as,

 \implies \sf A + B =\: 180^{\circ} - 45^{\circ}

 \implies \sf\bold{\purple{B =\: 180^{\circ} - (A + 45^{\circ})}}

Now,

 \implies \sf \dfrac{tanA . tanB}{(1 + tanA)(1 + tanB)}\\

We can simply put the value of B,

 \implies \sf \dfrac{tanA . tan\bigg(180^{\circ} - (A + 45^{\circ})\bigg)}{(1 + tanA)(1 + tan\bigg(180^{\circ} - (A + 45^{\circ})\bigg)}\\

 \implies \sf \dfrac{- tanA . tan(A + 45^{\circ})}{(1 + tanA)\bigg(1 + tan(A + 45^{\circ})\bigg)}\\

 \implies \sf \dfrac{- tanA . \bigg(\dfrac{\cancel{1 + tanA}}{1 - tanA}\bigg)}{(\cancel{1 + tanA})\bigg(1 - \dfrac{1 + tanA}{1 - tanA}\bigg)}\\

 \implies \sf \dfrac{- tanA . \dfrac{1}{\cancel{1 - tanA}}}{\bigg(\dfrac{\cancel{1} - tanA \cancel{-} 1 - tanA}{\cancel{1 - tanA}}\bigg)}\\

 \implies \sf \dfrac{\cancel{-} \cancel{tanA}}{\cancel{-} 2\: \cancel{tanA}}

 \implies \sf\bold{\red{\dfrac{1}{2}}}

 \sf\boxed{\bold{\green{\therefore The\: value\: of\: \dfrac{tanA . tanB}{(1 + tanA)(1 + tanB)}\: is \dfrac{1}{2}\: .}}}

Similar questions