Math, asked by HA7SH, 5 months ago

Hola brainly wizards,

Question:-

Differentiate w.r.t.x: (x + 1)² + (x + 2)³. (x + 3)⁴.

Plz solve it's urgent.​

Answers

Answered by Anonymous
32

Solution :

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(x + 1)^{2} + (x + 2)^{3} \cdot (x + 3)^{4}]}{dx}} \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(x + 1)^{2}]}{dx} + \dfrac{d[(x + 2)^{3} \cdot (x + 3)^{4}]}{dx}} \\ \\

\textsf{Now, let us differentiate}\: \sf{(x + 2)^{3} \cdot (x + 3)^{4}} \textsf{of the equation :}

\underline{\sf{Product\:rule\:of \:differentiation :-}} \\ \\ \sf{\dfrac{d(uv)}{dx} = (u)\cdot \dfrac{d(v)}{dx} + (v) \cdot \dfrac{d(u)}{dx}} \\ \\ \\

\textsf{By using the product rule of differentiation, and substituting the values in it, we get :}\\ \\

:\implies \sf{\dfrac{d(uv)}{dx} = [(x + 2)^{3}] \cdot \dfrac{d[(x + 3)^{4}]}{dx} + [(x + 3)^{4}] \cdot \dfrac{d[(x + 2)^{3}]}{dx}} \\ \\

\textsf{By using the power rule of differentiation, we get :}\\ \\

\underline{\sf{Power\:rule\:of \:differentiation :-}} \\ \\ \sf{\dfrac{d(x^{n})}{dx} = n\cdot x^{(n - 1)}} \\ \\ \\

:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot  4(x + 3)^{(4 - 1)} + (x + 3)^{4} \cdot 3(x + 2)^{(3 - 1)}} \\ \\

:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot  4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}} \\ \\

:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot  4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}} \\ \\

\boxed{\therefore \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot  4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}}} \\ \\

\textsf{Now, let us differentiate}\: \sf{(x + 1)^{2}} \textsf{of the equation :}

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(x + 1)^{2}]}{dx}} \\ \\

\textsf{By using the power rule of differentiation, we get :}\\ \\

\underline{\sf{Power\:rule\:of \:differentiation :-}} \\ \\ \sf{\dfrac{d(x^{n})}{dx} = n\cdot x^{(n - 1)}} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2(x + 1)^{(2 - 1)}} \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2(x + 1)^{1}} \\ \\

\boxed{\therefore \sf{\dfrac{dy}{dx} = 2(x + 1)}} \\ \\

\textsf{Now, by substituting the derivative of}\: \sf{(x + 1)^{2}} and \sf{(x + 2)^{3} \cdot (x + 3)^{4}} \textsf{in the equation, we get :} \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(x + 1)^{2}]}{dx} + \dfrac{d[(x + 2)^{3} \cdot (x + 3)^{4}]}{dx}} \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2(x + 1) + (x + 2)^{3} \cdot  4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}} \\ \\

\underline{\underline{\therefore \sf{\dfrac{dy}{dx} = 2(x + 1) + (x + 2)^{3} \cdot  4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}}}} \\ \\

Answered by gurmanpreet1023
5

\Huge\underline{\overline{\mid{\green{Answer}}\mid}}

Refer to the attachment.

\Huge{-------------}

Formulas used :-

• log xⁿ = nlogx

• d/dx(log x) = 1/x

•d/dx(xⁿ) = nxⁿ-¹

×××Logarithmic Differentiation×××

\Huge \boxed{ \colorbox{gold}{hope \: this \: helps}}

Attachments:
Similar questions