Science, asked by HA7SH, 3 months ago

Hola brainly wizards,

Solve the question mentioned below:-

What work is said to be done to increase the velocity of a car from 15 km/h to 30 km/h, if the mass of
the car is 1000 kg?​

Remember these points:-
1. Don't spam.
2. Answer should be relevant.

Answers

Answered by IdyllicAurora
46

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Kinetic Energy has been used. We are given the initial and final velocities of the body. Firstly we can convert them in standard units this is because Unit of Workdone is Joules and it is given as Kg m/sec². After this we can apply the value and find the answer.

Let's to it !!

_______________________________________________

★ Formula Used :-

\\\;\boxed{\sf{Kinetic\;Energy_{(change)}\;=\;\bf{\dfrac{1}{2}\:mv^{2}\;-\;\dfrac{1}{2}\:mu^{2}}}}

_______________________________________________

★ Solution :-

Given,

» Initial Velocity of car, u = 15 Km/hr

» Final Velocity of car, v = 30 Km/hr

» Mass of the car, m = 1000 Kg

_______________________________________________

~ For Standard units of Velocities ::

We see that for the unit Joule, we don't have velocity of km/hr. So first we need to change the velocities in m/sec.

Then,

Initial Velocity, u -

\\\;\sf{\rightarrow\;\;15\;Km\:hr^{-1}\;=\;\bf{\dfrac{15\;\times\;1000}{60\;\times\;60}\;m\:sec^{-1}}}

\\\;\sf{\rightarrow\;\;15\;Km\:hr^{-1}\;=\;\bf{\dfrac{15\;\times\;10}{6\;\times\;6}\;m\:sec^{-1}}}

\\\;\sf{\rightarrow\;\;15\;Km\:hr^{-1}\;=\;\bf{\dfrac{5\;\times\;5}{6}\;m\:sec^{-1}}}

\\\;\bf{\rightarrow\;\;15\;Km\:hr^{-1}\;=\;\bf{\dfrac{25}{6}\;m\:sec^{-1}}}

Final Velocity, v -

\\\;\sf{\rightarrow\;\;30\;Km\:hr^{-1}\;=\;\bf{\dfrac{30\;\times\;1000}{60\;\times\;60}\;m\:sec^{-1}}}

\\\;\sf{\rightarrow\;\;30\;Km\:hr^{-1}\;=\;\bf{\dfrac{30\;\times\;10}{6\;\times\;6}\;m\:sec^{-1}}}

\\\;\sf{\rightarrow\;\;30\;Km\:hr^{-1}\;=\;\bf{\dfrac{5\;\times\;10}{6}\;m\:sec^{-1}}}

\\\;\bf{\rightarrow\;\;30\;Km\:hr^{-1}\;=\;\bf{\dfrac{50}{6}\;m\:sec^{-1}}}

_______________________________________________

~ For Workdone to increase the Velocity ::

We know that,

\\\;\;\sf{:\Longrightarrow\;\!Kinetic\;Energy_{(\Delta)}\;=\;\bf{Final\;K.E.\;-\;Initial\;K.E.}}

By applying values, we get,

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{1}{2}\:mv^{2}\bigg)\;-\;\bigg(\dfrac{1}{2}\:mu^{2}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{1}{2}\:\times\:1000\;\times\;\bigg(\dfrac{50}{6}\bigg)^{2}\bigg)\;-\;\bigg(\dfrac{1}{2}\:\times\:1000\;\times\;\bigg(\dfrac{25}{6}\bigg)^{2}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{1}{2}\:\times\:1000\;\times\;\dfrac{2500}{36}\bigg)\;-\;\bigg(\dfrac{1}{2}\:\times\:1000\;\times\;\dfrac{625}{36}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(500\;\times\;\dfrac{2500}{36}\bigg)\;-\;\bigg(500\;\times\;\dfrac{625}{36}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{1250000}{36}\bigg)\;-\;\bigg(\dfrac{312500}{36}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{1250000\;-\;312500}{36}\bigg)}}

\\\;\;\sf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{\bigg(\dfrac{937500}{36}\bigg)}}

\\\;\;\bf{:\Longrightarrow\;\;Kinetic\;Energy_{(\Delta)}\;=\;\bf{26041.67\;\;Joules}}

Also, 1 Joule = 1 Kg m²/sec²

Even, this Change in Kinetic Energy, = Work Done.

\\\;\underline{\boxed{\tt{Hence,\;\;required\;\;Workdone\;=\;\bf{26041.67\;\;Joules}}}}

_______________________________________________

More to know :-

\\\;\tt{\leadsto\;\;Workdone\;=\;Force\;\times\;Distance\;=\;[M^{1}\:L^{2}\:T^{-2}]}

\\\;\tt{\leadsto\;\;Pressure\;=\;\dfrac{Force}{Area}\;=\;[M^{1}\:L^{-1}\:T^{-2}]}

\\\;\tt{\leadsto\;\;Power\;=\;\dfrac{Work}{Time}\;=\;[M^{1}\:L^{2}\:T^{-3}]}

\\\;\tt{\leadsto\;\;Force\;=\;Mass\;\times\;Acceleration\;=\;[M^{1}\:L^{1}\:T^{-2}]}

\\\;\tt{\leadsto\;\;Potential\;Energy\;=\;Mass\;\times\;Acceleration\;\times\;Height\;=\;[M^{1}\:L^{2}\:T^{-2}]}

Answered by unknown2516
1

∴ Work done =337500 Joule.

if u think answer is wrong u can report it

need ur help

pls check my recently asked questions..

hope you will help

Attachments:
Similar questions