Math, asked by iamanonymous221, 1 month ago

Hola Brianlians!
#2 Today's Questions
For, Mods, Stars and best users only!
If 4 tan \beta = 3, then \frac{4 \sin\beta - 3 \cos \beta }{4 \sin\beta + 3 \cos \beta} is equal to?​

Answers

Answered by IIMrVelvetII
3

Given :-

→ 4 tan β = 3

 \tan \beta  =  \frac{3}{4}

Solution :-

→ \tan \beta = \frac{3}{4} =  \frac{b}{p} = \frac{AB}{BC}

  • AB = 3 cm
  • BC = 4 cm
  • AC = ?

By Pythagoras Theorem,

\sf{→{h}^{2} = {p}^{2} + {b}^{2}}

 \sf{→ {AC}^{2} = {AB}^{2} + {BC}^{2}}

 \sf{→ {AC}^{2} = {4}^{2} + {3}^{2}}

 \sf{→ {AC}^{2} = 16 + 5}

 \sf{→ {AC}^{2} = 25}

 \sf{→ AC =  \sqrt{25}} = 5 \: cm

Equation :-

→ \boxed{\dfrac{4 \sin\beta - 3 \cos \beta }{4 \sin\beta + 3 \cos \beta}}

 \sf{→ \frac{4 \times  \frac{AB}{AC} - 3 \times \frac{BC}{AC}}{4 \times  \frac{AB}{AC} + 3 \times  \frac{BC}{AC}}}

→ \frac{4 \times  \frac{4}{5} - 3 \times  \frac{3}{5} }{4 \times  \frac{4}{5} - 3 \times  \frac{3}{5}}

→ \frac{ \frac{16}{5} -  \frac{9}{5}}{ \frac{16}{5} +  \frac{9}{5} }

→ \frac{ \frac{7}{ \cancel{5}}}{ \frac{25}{ \cancel{5}}}

→ \boxed {\dfrac{7}{25}}

Hence,  \frac{4 \sin\beta - 3 \cos \beta }{4 \sin\beta + 3 \cos \beta} is equal to  \frac{7}{25} .

Answered by Anglemuskan31
3

Step-by-step explanation:

Given :-

→ 4 tan β = 3

 \tan \beta  =  \frac{3}{4}

Solution :-

→ \tan \beta = \frac{3}{4} =  \frac{b}{p} = \frac{AB}{BC}

AB = 3 cm

BC = 4 cm

AC = ?

By Pythagoras Theorem,

\sf{→{h}^{2} = {p}^{2} + {b}^{2}}

 \sf{→ {AC}^{2} = {AB}^{2} + {BC}^{2}}

 \sf{→ {AC}^{2} = {4}^{2} + {3}^{2}}

 \sf{→ {AC}^{2} = 16 + 5}

 \sf{→ {AC}^{2} = 25}

 \sf{→ AC =  \sqrt{25}} = 5 \: cm

Equation :-

→ \boxed{\dfrac{4 \sin\beta - 3 \cos \beta }{4 \sin\beta + 3 \cos \beta}}

 \sf{→ \frac{4 \times  \frac{AB}{AC} - 3 \times \frac{BC}{AC}}{4 \times  \frac{AB}{AC} + 3 \times  \frac{BC}{AC}}}

→ \frac{4 \times  \frac{4}{5} - 3 \times  \frac{3}{5} }{4 \times  \frac{4}{5} - 3 \times  \frac{3}{5}}

→ \frac{ \frac{16}{5} -  \frac{9}{5}}{ \frac{16}{5} +  \frac{9}{5} }

→ \frac{ \frac{7}{ \cancel{5}}}{ \frac{25}{ \cancel{5}}}

→ \boxed {\dfrac{7}{25}}

Hence,  \frac{4 \sin\beta - 3 \cos \beta }{4 \sin\beta + 3 \cos \beta} is equal to  \frac{7}{25} .

Similar questions