Math, asked by Asha73, 9 months ago

Hola ❤

Good morning guys ❤

plzz solve it

❌No spam ❌

Attachments:

Answers

Answered by tushar1224
4

REFER TO THE ATTACHMENT FOR THE ANSWER

<marqueeplease mark it as brainliest

Attachments:
Answered by BrainlyPopularman
8

{ \bold{ \boxed{ \boxed{  \huge\red{ \mathfrak{ \bigstar \: ANSWER}}}}}}

 { \bold{ \underline{Given}  :  - }} \\  \\ { \bold{ \orange{xy +  {y}^{2}  =  \tan(x + y) }}}

{ \bold{ \underline{To \:  \:  find} :  - }}\\  \\ { \bold{ \green{ \huge{ \frac{dy}{dx} }}}} \\  \\  \\ { \bold{ \boxed{ \boxed{ \red{ \huge{ \mathfrak{ \bigstar \: solution \:  \bigstar}}}}}}}

{ \bold{ \orange{  : \implies \:xy  +   {y}^{2}   =  \tan(x + y) }}} \\  \\ { \bold{ \blue{  \:now \:  \: d.w.r \:  \: \:  to \:   \:  \: x \:  - }}} \\  \\  \\ { \bold{ \orange{  : \implies \: x \frac{dy}{dx}  + y + 2y \frac{dy}{dx}  =  {sec}^{2} (x + y)(1 +  \frac{dy}{dx}) }}} \\  \\  \\ { \bold{ \orange{  : \implies \: \frac{dy}{dx} (x + 2y) + y =  {sec}^{2}(x + y) +  {sec}^{2} (x + y)( \frac{dy}{dx} )  }}} \\   \\ \\ { \bold{ \orange{  : \implies \:  \frac{dy}{dx} (x + 2y -  {sec}^{2} (x + y)) =  {sec}^{2} (x + y) - y}}} \\  \\ { \bold{ \orange{  : \implies \: \frac{dy}{dx} =  \frac{ {sec}^{2}(x + y) - y }{x +2 y -  {sec}^{2} (x + y)}   }}}

{ \bold{ \underline{  \red{used \:  \: formula} } : - }} \\  \\ { \bold{ \green{   \:  \:  \:  \:  \:  \: . \:  \:  \frac{d(ab)}{dx}   = \: b \frac{da}{dx} + a \frac{db}{dx}  }}}  \\ \\ \:  \:  \:  \:  \:  \:  { \bold{ \green{  . \:  \:  \:  \frac{d( tanx) }{dx} =  {sec}^{2}(x)  }}}

Similar questions