Math, asked by MealsoxD, 5 months ago

Hola guys!
Question--If two circles intersect in two points prove that the line through their centres is the perpendicular bisector of the common chord.

No spam! No copied answer!
Caution - U spam so, i report your 10 answer

Answers

Answered by KANISHSHYAM
5

Answer:

′ ⇒∠AOM=∠BOM......(i)

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we have

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMO

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°HenceOO

′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°HenceOO ′

.

Answered by bhartirathore299
0

Answer:

hope so it will helpful to you

Attachments:
Similar questions