Hola guys!
Question--If two circles intersect in two points prove that the line through their centres is the perpendicular bisector of the common chord.
No spam! No copied answer!
Caution - U spam so, i report your 10 answer
Answers
Answer:
′
′
′ ⇒∠AOM=∠BOM......(i)
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we have
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMO
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°HenceOO
′ ⇒∠AOM=∠BOM......(i)Now in ΔAOM and ΔBOM we haveOA=OB (radii of same circle)∠AOM=∠BOM (from (i))OM=OM (common side)⇒ΔAOM≅ΔBOM (SAS congruncy)⇒AM=BM and∠AMO=∠BMOBut∠AMO+∠BMO=180°⇒2∠AMO=180°⇒∠AMO=90°Thus,AM=BM and∠AMO=∠BMO=90°HenceOO ′
.
Answer:
hope so it will helpful to you