Hola mates :)
Q. How do plants respond ( like touch me not plant) even if they don't possess any neuron ?
###need best quality answer###
Answers
Answered by
1
Some people think that plants respond to talking, the playing of music, and other forms of human attention. And although plants more than likely do not process human language, they are nonetheless highly aware of their surroundings and are very capable of communication among their cells. Furthermore, some scientists think that a plant's internal communication system is very close to what we could legitimately call a nervous system. After all, some mimosas are famous for retracting rapidly after being disturbed, and Venus flytraps react swiftly to the presence of insects in their capture devices. Charles Darwin made comparable observations and proposed similar ideas about plants. In one of his less well known works, The Power of Movement in Plants(1880), he wrote about the radicle, the embryonic root in a plant, and the sensitivity of its tip to diverse kinds of stimulation:
It is hardly an exaggeration to say that the tip of the radicle thus endowed, and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense organs, and directing the several movements.
Darwin was saying that the radicle not only behaves like a brain by directing the functions of other cells, but is also positioned in the corresponding place in the anatomy of the plant. Some modern botanists have extended this idea. In 2005, the first international plant neurobiology meeting was held in Florence,Italy, and a brand-new journal, Plant Signaling and Behavior, was launched in 2006. Just what are the plant neurobiologists proposing?
The idea that plants have nervous systems stems from several sources of information. First, plants have genes that are similar to those that specify components of animal nervous systems. Such components include receptors for glutamate, an amino acid that is one of the building blocks of proteins but that also functions as a neurotransmitter. Other components are neurotransmitter pathway activators, such as those known as G-box proteins, and a family of “14-3-3” proteins, which act to bind various signaling proteins. All these proteins have been observed in animals, in which they have been shown to have distinct roles in neural function. Yet they are also found in plants.
Second, although those proteins more than likely do not have “neural” functions in plants, some plant proteins do behave in ways very similar to neural molecules. Third, some plants seem to show synapse-like regions between cells, across which neurotransmitter molecules facilitate cell-to-cell communication. Included in the requirement for comparison is that the regions should have the same characteristics as animal synapses, such as the formation of vesicles, small bubbles that store the neurotransmitters that are to be released across the synapse. Fourth, many plants have vascular systems that look like they could act as conduits for the “impulses” that they need to transmit throughout the body of the plant. Last, some plant cells display what could be interpreted as action potentials—events in which the electrical polarity across the cell membrane does a quick, temporary reversal, as occurs in animal neural cells.
Plz Brain mark fast
It is hardly an exaggeration to say that the tip of the radicle thus endowed, and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense organs, and directing the several movements.
Darwin was saying that the radicle not only behaves like a brain by directing the functions of other cells, but is also positioned in the corresponding place in the anatomy of the plant. Some modern botanists have extended this idea. In 2005, the first international plant neurobiology meeting was held in Florence,Italy, and a brand-new journal, Plant Signaling and Behavior, was launched in 2006. Just what are the plant neurobiologists proposing?
The idea that plants have nervous systems stems from several sources of information. First, plants have genes that are similar to those that specify components of animal nervous systems. Such components include receptors for glutamate, an amino acid that is one of the building blocks of proteins but that also functions as a neurotransmitter. Other components are neurotransmitter pathway activators, such as those known as G-box proteins, and a family of “14-3-3” proteins, which act to bind various signaling proteins. All these proteins have been observed in animals, in which they have been shown to have distinct roles in neural function. Yet they are also found in plants.
Second, although those proteins more than likely do not have “neural” functions in plants, some plant proteins do behave in ways very similar to neural molecules. Third, some plants seem to show synapse-like regions between cells, across which neurotransmitter molecules facilitate cell-to-cell communication. Included in the requirement for comparison is that the regions should have the same characteristics as animal synapses, such as the formation of vesicles, small bubbles that store the neurotransmitters that are to be released across the synapse. Fourth, many plants have vascular systems that look like they could act as conduits for the “impulses” that they need to transmit throughout the body of the plant. Last, some plant cells display what could be interpreted as action potentials—events in which the electrical polarity across the cell membrane does a quick, temporary reversal, as occurs in animal neural cells.
Plz Brain mark fast
sandeep187350:
welcome
Answered by
2
Answer:
Plants are known to respond to a number of external stimuli like light, gravity, touch, chemicals, etc. Plants respond to the external factors with the help of receptors and hormones. The receptors help the plants to sense the external stimulus and act accordingly. They control the growth of plant in response to light.
hey buddy✌✌
hope it help you
Mark me brainlist pls
Similar questions