Hola Maths Aryabhatta's Here are some Interesting Questions.Try to solve all :-
is divided by 2x⁴ -x³ + 3x² + x -5 get the remainder ax³+bx²+cx+D then
a + b + c + D is ??
_________________________
x belongs to Real numbers x² -15x +1 =0 then x⁴+1/x⁴ is
1) 49279
2) 49727
3) 49772
4) 49227
___________________________
Answers
Answer:
As per the reminder theory for any
polynomial equation
p(x)=g(x).q(x)+r(x)→(i)
where p(x),g(x)= polynomials
q(x)= quotient
r(x)= reminder
Assuming r(x)=Ax+B
here p(x)=x
100 ,g(x)=x 2 −3x+2
Simplifying g(x)
g(x)=x 2 −3x+2=x 2 −2x−x+2=(x−2)(x−1)
Substituting in eqn (i)
p(x)=(x−2)(x−1).q(x)+Ax+B
taking (x)=1
p(1)=(1−2)(1−1).q(1)+A(1)+B
100 =0+A+B
A+B=1→(i)
taking x=2
p(2)=(2−2)(2−1).q(x)+A(2)+B2 100 =0+2A+B2A+B=2
100 →(ii)
from eqn
(i) B=1−A putting it in eqn
(i)2A+1−A=2 100
A=2 100 −1
now B=1−2 100 +1=2−2 100
∴B(2−2 100 )
∴ Reminder =Ax+B=(2 100 −1)−x+(2−2 100 )
Step-by-step explanation:
plz mark me as brainly list plz
Answer:
1)7
2) 49727
Step-by-step explanation:
1) Given,
Dividend = x²⁰¹¹- x²⁰¹⁰ + 2x¹⁰⁰ - 3x⁹⁷ + 5x³ - x² + 4
Let,
f(x) = x²⁰¹¹- x²⁰¹⁰ + 2x¹⁰⁰ - 3x⁹⁷ + 5x³ - x² + 4
Divisor = 2x⁴ -x³ + 3x² + x -5
Let,
g(x) = 2x⁴ -x³ + 3x² + x -5
Remainder = ax³ + bx² + cx + d
Let,
r(x) = ax³ + bx² + cx + d
Solution :-
As they not given any value of 'x' :-
Let us take the value of 'x = 1' :-
We know that :-
Dividend = Divisor × Quotient + Remainder
→ f(x) = g(x) × q(x) + r(x)
x²⁰¹¹- x²⁰¹⁰ + 2x¹⁰⁰ - 3x⁹⁷ + 5x³ - x² + 4 = (2x⁴ -x³ + 3x² + x -5) q(x) + ax³ + bx² + cx + d
Substituting x = 1 :-
(1)²⁰¹¹ - (1)²⁰¹⁰ + 2(1)¹⁰⁰ - 3(1)⁹⁷ + 5(1)³ - (1)² + 4 = [2(1)⁴ - (1)³ + 3(1)² + 1 - 5)] q(x) + a(1)³ + b(1)² + c(1) + d
1 - 1 + 2 - 3 + 5 - 1 + 4 = [2 - 1 + 3 + 1 - 5]q(x) + a + b + c + d
7 = 0 [q(x) ] + a + b + c + d
→ a + b + c + d = 7
2) Given,
x² - 15x + 1 = 0
Dividing the above equation with 'x' :-
(x²-15x+1)/x = 0/x
x - 15 + (1/x) = 0
x + 1/x = 15
Squaring on both sides :-
(x + 1/x)² = (15)²
x² + 1/x² + 2x²(1/x²) = 225
x² + 1/x² = 223
Squaring on both sides :-
(x² + 1/x²)² = (223)²
x⁴ + 1/x⁴ + 2x²(1/x²) = 49729
x⁴ + 1/x⁴ = 49727