HOLA!!! PLZ SOLVE THIS ONE!!!!!
Solve this by quadratic equation:
4x² - 4ax + (a²- b²)=0
I want a detailed explanation..
the answer which would satisfy me would be brainliest......
Answers
Given: 4x² - 4ax + (a² - b²) = 0.
Here in this equation, constant term = (a² - b²) = (a+b)(a-b)
Coefficient of middle term= - 4a
Also, Coefficient of the middle term= -[2(a+b)+2(a+b)]
=> 4x² - 4ax + (a² - b²) = 0.
=> 4x² -[2(a+b)+2(a-b)]x + (a+b)(a-b)= 0
=> 4x² - 2(a+b)x - 2(a-b)x + (a+b)(a-b)= 0
=> [4x² - 2(a+b)x ] - [ 2(a- b)x + (a+b)(a-b)]= 0
=> 2x [ 2x-(a+b)] -(a-b)[2x - (a+b)]
=> [2x - (a+b)] [2x-(a-b)]= 0
=> [2x - (a+b)] = 0 or [2x-(a-b)]= 0
=> 2x = a + b or 2x = a-b
=> x = ( a+b)/2 or x= (a-b)/2
Hope this helps you!
Given Equation,
4x² - 4ax + (a² - b²) = 0
→4x² - 4ax + (a+b)(a-b) = 0
Here,the middle term is -4a
We need to express the constant term in terms of the middle term
i.e., -4a = [(a+b)+(a-b)]
•We obtain the equation,
4x² -2[(a+b) + (a-b)]x + (a+b)(a-b)=0
•By splitting the middle term,
→4x² - 2(a+b)x - 2(a-b)x + (a+b)(a-b)=0
→2x[2x - (a+b)] -(a-b)[2x - (a+b)]=0
→[2x - (a+b)][2x - (a-b)]=0
→2x - (a+b)=0 or, 2x - (a-b)=0
→2x = a+b or, 2x = a-b
→x = (a+b)/2 or (a-b)/2
- Thus,the roots are (a+b)/2 and (a-b)/2