Science, asked by Anonymous, 5 months ago

Hola !!

Question:-
The area of the symmetrical figure given in the attachment is:

Options:-
(a) 108 cm²
(b) 180 cm²
(c) 81 cm²
(d) 118 cm²

Note:-
→ Do not spam or copy from any websites.
→ The answer with full explanation will be marked as the brainliest.

ALL THE BEST !​

Attachments:

Answers

Answered by aditya914548
2

Answer:

The answer will be 108cm2

Answered by CɛƖɛxtríα
357

_____________________________________

\LARGE{\underline{\underline{\tt{QUESTION:-}}}}

The area of the symmetrical figure (refer attachment) is:

(a) \sf{108\:{cm}^{2}}

(b) \sf{180\:{cm}^{2}}

(c) \sf{81\:{cm}^{2}}

(d) \sf{118\:{cm}^{2}}

_____________________________________

\huge{\underline{\underline{\tt{ANSWER:-}}}}

Given:

A symmetrical figure made of:

  • Two rectangles of measures 12 cm and 2 cm.
  • Two rectangles of measures 14 cm and 2 cm.
  • A square of side 2 cm.

To find:

  • The area of the symmetrical figure.

Solution:

\large\underline{\boxed{\sf{\red{Area\:of\:symmetrical\:figure\:=\:(A + B + C + D + E)\:sq.units}}}}

Where,

  • Rectangle 1 \rightarrow A
  • Rectangle 2 \rightarrow B
  • Rectangle 3 \rightarrow C
  • Rectangle 4 \rightarrow D
  • Square \rightarrow E

We know that,

\sf\rightarrow{Area\:of\:a\:rectangle=\:Length\times Breadth\:sq.units}

\sf\rightarrow{Area\:of\:a\:square=\:({Side})^{2}\:sq.units}

So,

\sf\underline{\purple{Area\:of\:Rectangle\:(A):-}}

\sf\implies{12\times2\:=24\:{cm}^{2}}

\sf\underline{\purple{Area\:of\:Rectangle\:(B):-}}

\sf\implies{12\times2\:=24\:{cm}^{2}}

\sf\underline{\purple{Area\:of\:Rectangle\:(C):-}}

\sf\implies{14\times2\:=28\:{cm}^{2}}

\sf\underline{\purple{Area\:of\:Rectangle\:(D):-}}

\sf\implies{14\times2\:=28\:{cm}^{2}}

\sf\underline{\purple{Area\:of\:Square\:(E):-}}

\sf\implies{{2}^{2}\:=4\:{cm}^{2}}

Total area of the figure:

\implies 24 + 24 + 28 + 28 + 4

\implies 48 + 56 + 4

\implies 108

Final answer:

  • Area of the given symmetrical figure is \large\underline{\boxed{\mathrm{\green{108\:{cm}^{2}.}}}}
  • Therefore, Option: a is the answer.

_____________________________________

\large{\bold{Note:-}}

  • If you're an app user, kindly swipe right of the screen to view the full answer.
Attachments:
Similar questions