Science, asked by Braɪnlyємρєяσя, 3 months ago

HOLA,





\huge \fbox \red{❥ Question}




A concave lens has focal length of 20 cm. At what distance from the lens a 5 cm tall object be placed so that it forms an image at 15 cm from the lens? Also calculate the size of the image formed.​

Answers

Answered by Anonymous
35

here is your answer full and correct answer

please mark as brainliest answer

Attachments:

Anonymous: thanks bro for so many thanks
Answered by Anonymous
10

 \color{orange} \huge  \underline{ \underline{\cal GIVEN}}

As the lens used is concave so it's focal length will be negative

  • Focal length,F=20cm
  • Height of object,H=5cm
  • Distance of image,V=15cm

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

 \color{green} \huge \cal \underline{\underline{TO  \: FIND} }

  • Distance of object from lens,u
  • Height of the image

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

 \color{blue} \huge \cal \underline{ \underline{SOLUTION}}

First we apply lens formula to find distance of object

 \color{navy}\LARGE \sf \frac{1}{f}  =  \frac{1}{v}   -   \frac{1}{u}

 \LARGE \sf   \to\frac{1}{20}  =  \frac{1}{15}   -   \frac{1}{u}

 \LARGE \sf \to \frac{1}{u}  =  \frac{1}{15}   -  \frac{1}{20}

 \LARGE \sf \to \frac{1}{u}  = \frac{1}{60}

 \LARGE  \sf \color{grey} Cross  \: multiply

 \LARGE \boxed{ \sf  \color{gold}\to {u}  = {60} cm}

So distance of object from the mirror is 60m.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Now we have to find size of image.

Now we apply formula of magnification:

 \color{black} \LARGE  \sf M= \frac{v}{u}......(1)

 \color{black} \LARGE \sf \: M= \frac{Height \: of \: image}{Height \: of \: object}....(2)

 \LARGE  \sf From  \: (1)  \: and \:  (2)

 \color{red} \LARGE \sf \frac{v}{u} = \frac{Height \: of \: image}{Height \: of \: object}

 \LARGE \sf Put \:  the \:  given \:  values

 \color{pink} \LARGE \sf \frac{15}{60} = \frac{Height \: of \: image}{5}

 \LARGE \sf \frac{15 \times 5}{60} = {Height \: of \: image}{}

 \LARGE  \color{lightgreen}\sf 1.5cm = {Height \: of \: image}{}

Similar questions