Physics, asked by aishi2020, 8 months ago

Holla! Solve the attachment NO SPAM​

Attachments:

Answers

Answered by tusharraj77123
4

Answer:

\large\color{green}\underline{\underline{Given:}}

▪︎Intial velocity of the ball or 'u' = 19.6m-¹

▪︎Time taken by the ball to reach the ground or 't'= 5 sec

▪︎Accelertation due to Gravity or 'a' = 9.8 m-²

\large\color{blue}\underline{\underline{To\:find:}}

(i)The height of the tower = ??

(ii)Velocity of the ball reaching the ground = ??

\large\color{red}\underline{\underline{Taken:}}

t=\frac{u}{g}

Size\:of\:tower=ut+\frac{1}{2}g

velocity=u+gt

\large\color{orange}\underline{\underline{Concept:}}

Equation 1.

• First find time taken to reach the ball at max height by taking the first formula .

• Then find the height of the tower by taking the second formula .

Equation 2.

• To find the velocity take the third formula .

\large\color{purple}\underline{\underline{Solution:}}

Equation 1 :

Time=\frac{19.6m-1}{9.8m-2}

\boxed{Time=2\:sec\:ball\:takes\:to\:reach\:the\:max\:height}

So , the ball takes 2 seconds to reach max height and two seconds back to the tower . So it takes only one second to reach the ground .

So , there is only one second to calculate the size of the tower .

Now,find\:the\:size\:of\:tower

Taken , ut+\frac{1}{2}g

\mapsto{19.6×1+\frac{1}{2}×9.8m}

\mapsto{19.6+4.9}

\therefore\boxed{24.5\:m\:is\:the\:height\:of\:the\:tower}

__________________________________

Equation 2 :

Now,find\:the\:velocity\:reaching\:the\:ground

From the zero intial velocity at time is 2 sec to the ground where the time is 5 sec . Now , the time taken 3 sec from max . So , the height to the ground .

Now ,

v=u+gt

v=0+9.8×3

v=0+29.4

\therefore\boxed{velocity=29.4m/s}

HOPE IT HELPS YOU

Answered by Anonymous
36

\color{purple}\large\underline{\underline{To\:Find:}}

\mathtt{The\:height\:of\:the\:tower.}

\mathtt{The\:velocity\:after\:reaching\:the\:ground.}

______________________________________

\color{blue}\large\underline{\underline{Concept:}}

\text{The height of the ball can} \text{be found by using the formula.}

\text{The velocity after reaching the }\text{ground will be taken as positive is it is falling under he gravity...}

\text{The velocity of the ball after reaching} \text{the ground is it's final velocity.}

______________________________________

\color{orange}\large\underline{\underline{Given:}}

\mathtt{Initial\:Velocity = 19.6m\:s^{-1}}

\mathtt{Time = 5s}

\mathtt{Accelaration = 9.8m\:s^{-2}}

______________________________________

\color{red}\large\underline{\underline{We\: know:}}

\color{blue}{\mathtt{\rightarrow s = ut +  \dfrac{1}{2}at^{2}}}

Where,

\mathtt{a = accelaration}

\mathtt{t = time\:taken}

\mathtt{s = height}

\color{blue}{\mathtt{\rightarrow v = u - gt}}

Where,

\mathtt{v = final\:velocity}

\mathtt{u = initial\:velocity}

\mathtt{g = accelaration\:due\:to\:gravity}

\mathtt{t = time\:taken}

\color{blue}{\mathtt{\rightarrow v^{2} = u^{2} - 2gh}}

Where,

\mathtt{v = final\:velocity}

\mathtt{u = initial\:velocity}

\mathtt{g = accelaration\:due\:to\:gravity}

\mathtt{h = height}

\color{blue}{\mathtt{\rightarrow h_{max} = \dfrac{u^{2}}{2g}}}

Where,

\mathtt{h = height}

\mathtt{u = initial\:velocity}

\mathtt{g = accelaration\:due\:to\:gravity}

\color{blue}{\mathtt{\rightarrow h = \dfrac{1}{2}gt^{2}}}

______________________________________

\color{navy}\large\underline{\underline{Taken:}}

\text{let the height be h.}

\text{let the final velocity be v.}

______________________________________

\color{purple}\large\underline{\underline{Solution:}}

\mathrm{At\:the\:highest\:point, v = 0}

\textit{For upward journey , from relation:}

 v^{2} = u^{2} - 2gh

\Rightarrow 0^{2} = u^{2} - 2gh

or

h_{max} = \dfrac{u^{2}}{2g}

\Rightarrow h_{max} = \dfrac{19.6^{2}}{2 \times 9.8}

\Rightarrow h_{max} = \dfrac{19.6 \times 19.6}{19.6}

\Rightarrow h_{max} = 19.6 m

______________________________________

\mathrm{If \:the\:ball\:takes\:time\:t_{1} to\:go\:to}\mathrm{go\:to\: highest\:point\:from\:the}\mathrm{top\:of\:building,\:then\:for\:upward}\mathrm{journey,\:from\:relation}

v = u - gt_{1} , [v = 0]

\Rightarrow 0 = 19.6 - 9.8t_{1}

\Rightarrow -19.6 = - 9.8t_{1}

\Rightarrow \dfrac{-19.6}{-9.8} = t_{1}

\Rightarrow 2 sec = t_{1}

\textsf{Time taken to reach the ground}

\Rightarrow Total\:time - Time\:taken\:for\:Upward\:journey

\Rightarrow t_{2} = 5 sec - 2 sec

\Rightarrow t_{2} = 3 sec

______________________________________

\mathtt{Final\:Velocity}

\textit{Now for downward journey from the highest}\textit{point , if the ball takes time to reach the ground}

We know

\mathrm{u = 0 , g = 9.8ms^{-2} , t_{2} = 3 sec}

 From\:relation

v = u + gt

\Rightarrow v = 0 + 9.8 \times 3

\Rightarrow v = 29.4ms^{-1}

______________________________________

\mathtt{Height\:of\:the\:tower}

\textit{From the relation}

 s = ut_{2} +  \dfrac{1}{2}at_{2}^{2} [u = 0]

\Rightarrow s = 0 \times 3 +  \dfrac{1}{2} \times 9.8 \times 3^{2}

\Rightarrow s = 4.9 \times 9

\Rightarrow s = 44.1 m

\Rightarrow Height\:of\:tower = Total Hight - height_{max}

\Rightarrow Height\:of\:tower = (44.1 - 19.6)m

\therefore Height\:of\:tower = 24.5 m

______________________________________

Similar questions