❤✏✏Holla user✏✏❤
!!!Have an attention plz!!!
IF sin2a+sin2b=sin2c prove that either a=90° and b=90°.
❎❎No spam❎❎
Answers
Answer:
A+B+C=180
sin2A+sin2B=sin2C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C
2sin(A+B)cos(A−B)=sin2C
2sin(180−C)cos(A−B)=sin2C
2sinCcos(A−B)=2sinCcosC
cos(A−B)=cosC
A−B=C
A=B+C
A=180−A
A=90
OR
cos(A−B)=cos(B−A)=cosC
B−A=C
B=A+C
B=180−B
B=90
Step-by-step explanation:
2sin(2A+2B)/2cos(2A−2B)/2=sin2C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosC
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosCcos(A−B)=cosC
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosCcos(A−B)=cosCA−B=C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosCcos(A−B)=cosCA−B=CA=B+C
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosCcos(A−B)=cosCA−B=CA=B+CA=180−A
2sin(2A+2B)/2cos(2A−2B)/2=sin2C2sin(A+B)cos(A−B)=sin2C2sin(180−C)cos(A−B)=sin2C2sinCcos(A−B)=2sinCcosCcos(A−B)=cosCA−B=CA=B+CA=180−AA=90
And
cos(A−B)=cos(B−A)=cosC
cos(A−B)=cos(B−A)=cosCB−A=C
cos(A−B)=cos(B−A)=cosCB−A=CB=A+C
cos(A−B)=cos(B−A)=cosCB−A=CB=A+CB=180−B
cos(A−B)=cos(B−A)=cosCB−A=CB=A+CB=180−BB=90