Math, asked by fa1747239, 1 month ago

HOLY FAITH MATHEWS 80 28. Two angles are complementary. One is 10° more than the other . Find the angles.​

Answers

Answered by ShírIey
95

Given: Two angles are complementary angles. & one angle is 10° more than the other angle.

Need to find: The angles?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Let's say, that the two angles be x and y respectively.

Given that,

  • One angle is 10° more than the other angle. Therefore:

:\implies\sf\quad y = x + 10^\circ\qquad\qquad\qquad\qquad\sf\Bigg\lgroup\ eq^{n}\:(i)\Bigg\rgroup\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\underline{\bf{\dag} \:\frak{As\;we\;know\;that\: :}}\\

  • Two angles said to be complementary angles when they add up to 90°.

:\implies\sf\quad First_{\:(angle)} + Second_{\:(angle)} = 90^\circ\\\\

:\implies\sf\quad x + y = 90^\circ\\\\

:\implies\sf\quad x + x + 10^\circ = 90^\circ\qquad\qquad\qquad\sf\Bigg\lgroup\ From\;eq^{n}\:(i)\Bigg\rgroup\\\\

:\implies\sf\quad 2x + 10^\circ = 90^\circ\\\\

:\implies\sf\quad 2x = 90^\circ - 10^\circ\\\\

:\implies\sf\quad 2x = 80^\circ\\\\

:\implies\sf\quad x = \cancel\dfrac{80^\circ}{2}\\\\

:\implies\quad\underline{\boxed{\pmb{\frak{x = 40^\circ}}}}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\underline{\bf{\dag} \:\:\sf{Now,\;Calculating\;'y'\; Therefore\: :}}\\\\⠀⠀⠀

:\implies\sf\quad x + y = 90^\circ\\\\

:\implies\sf\quad 40^\circ + y = 90^\circ\\\\

:\implies\sf\quad y = 90^\circ - 40^\circ\\\\

:\implies\quad\underline{\boxed{\pmb{\frak{y = 50^\circ}}}}\\\\

\therefore{\underline{\sf{Hence,\;the\;angles\;are\;{\pmb{\sf{50^\circ}}} \;and\; {\pmb{\sf{40^\circ}}} \:respectively.}}}

⠀⠀⠀⠀⠀

Answered by Atlas99
111

Let,

• The one angle = a

• The complement of a = 90° - a

From the question,

 \sf\implies \:  \: {a + (a-10\degree) = 90 \degree}

 \sf\implies \:  \: {2a-10\degree = 90 \degree}

\sf\implies \:  \: {2a = 90\degree + 10\degree}

\sf\implies \:  \: {a =   \cancel\frac{100\degree}{2}} \\

 \sf\large\pink{\implies\: \: \frak{a=50\degree}}

Therefore,

• One angle = a = 50°

Other angle = a - 10° = 50° - 10° = 40°

Similar questions