Art, asked by januchoco, 6 months ago

how 2b=a+c came
explain correctly please​

Attachments:

Answers

Answered by xxxmysterxxx
1

Answer:

Answer:

⌬ Convert 10°10'10" into centesimal system

First we will change it into Radian

\begin{gathered}:\Longrightarrow\sf 10^{\circ}10'10"=10+\dfrac{10}{60}+\dfrac{10}{60 \times 60}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=10+\dfrac{10}{60}+\dfrac{10}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=\dfrac{36000 + 600 + 10}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=\dfrac{36610}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10" = 10.17^{\circ}\end{gathered}

:⟹10

10

10"=10+

60

10

+

60×60

10

:⟹10

10

10"=10+

60

10

+

3600

10

:⟹10

10

10"=

3600

36000+600+10

:⟹10

10

10"=

3600

36610

:⟹10

10

10"=10.17

Now we will change it into centesimal system

\begin{gathered}:\Longrightarrow\sf 1 \:right \:angle = 100^g\\\\\\:\Longrightarrow\sf 90^{\circ} = 100^g\\\\\\:\Longrightarrow\sf 1^{\circ} = \bigg(\dfrac{100}{90} \bigg)^g\\\\\\:\Longrightarrow\sf 1^{\circ} = \bigg(\dfrac{10}{9} \bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(\dfrac{10}{9} \times 10.17\bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(10 \times 1.13\bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(11.3\bigg)^g\end{gathered}

:⟹1rightangle=100

g

:⟹90

=100

g

:⟹1

=(

90

100

)

g

:⟹1

=(

9

10

)

g

:⟹10.17

=(

9

10

×10.17)

g

:⟹10.17

=(10×1.13)

g

:⟹10.17

=(11.3)

g

Similar questions