how 2b=a+c came
explain correctly please
Answers
Answer:
Answer:
⌬ Convert 10°10'10" into centesimal system
First we will change it into Radian
\begin{gathered}:\Longrightarrow\sf 10^{\circ}10'10"=10+\dfrac{10}{60}+\dfrac{10}{60 \times 60}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=10+\dfrac{10}{60}+\dfrac{10}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=\dfrac{36000 + 600 + 10}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10"=\dfrac{36610}{3600}\\\\\\:\Longrightarrow\sf 10^{\circ}10'10" = 10.17^{\circ}\end{gathered}
:⟹10
∘
10
′
10"=10+
60
10
+
60×60
10
:⟹10
∘
10
′
10"=10+
60
10
+
3600
10
:⟹10
∘
10
′
10"=
3600
36000+600+10
:⟹10
∘
10
′
10"=
3600
36610
:⟹10
∘
10
′
10"=10.17
∘
Now we will change it into centesimal system
\begin{gathered}:\Longrightarrow\sf 1 \:right \:angle = 100^g\\\\\\:\Longrightarrow\sf 90^{\circ} = 100^g\\\\\\:\Longrightarrow\sf 1^{\circ} = \bigg(\dfrac{100}{90} \bigg)^g\\\\\\:\Longrightarrow\sf 1^{\circ} = \bigg(\dfrac{10}{9} \bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(\dfrac{10}{9} \times 10.17\bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(10 \times 1.13\bigg)^g\\\\\\:\Longrightarrow\sf 10.17^{\circ} = \bigg(11.3\bigg)^g\end{gathered}
:⟹1rightangle=100
g
:⟹90
∘
=100
g
:⟹1
∘
=(
90
100
)
g
:⟹1
∘
=(
9
10
)
g
:⟹10.17
∘
=(
9
10
×10.17)
g
:⟹10.17
∘
=(10×1.13)
g
:⟹10.17
∘
=(11.3)
g