Math, asked by arsanantha1890, 9 months ago

how (3+2√2)-(3+√2) is equal to √2??​

Answers

Answered by IndianArmyGirl
6

 \bf \huge \fbox \green{answer}

(3 + 2 \sqrt{2} ) - (3 +  \sqrt{2} ) =  \sqrt{2}

(3 + 2 \sqrt{2} ) - 3 -  \sqrt{2}  =  \sqrt{2}

 - 3(3 + 2 \sqrt{2} ) -  \sqrt{2} (3 + 2 \sqrt{2} ) =  \sqrt{2}

 - 9 - 6 \sqrt{2}  - 3 \sqrt{2}  - 2 \sqrt{2}  =  \sqrt{2}

 - 9 - 6 \sqrt{2}  - 3 \sqrt{2}  - 2 \sqrt{2}  -  \sqrt{2}  = 0

 =  - 9 - 12 \sqrt{2}

Answered by Anonymous
29

QUESTION:-

✯ʜᴏᴡ (3+2√2)-(3+√2) ɪs ᴇϙᴜᴀʟ ᴛᴏ √2??

ANSWER

\sf\implies (3+2 \sqrt{2})-(3+ \sqrt{2})= \sqrt{2}

\sf\implies 3+2 \sqrt{2}-3- \sqrt{2}=\sqrt{2}

\sf\implies 3-3 +2 \sqrt{2}- \sqrt{2}=\sqrt{2}(

\sf\implies 2 \sqrt{2}- \sqrt{2}= \sqrt{2}

\sf\implies 2 \sqrt{2}- \sqrt{2}= \sqrt{2}

\sf\implies 2 \sqrt{2}- \sqrt{2}= \sqrt{2}

\sf\implies \sqrt{2}= \sqrt{2}

\sf\therefore L.H.S=R.H.S.

HENCE,PROVED

___________________

Similar questions