How 48root 2 came in 6-4 root 2 / 6+4 root 2
Answers
Step-by-step explanation:
Rationalise of \bold{\frac{6-4\sqrt{2}}{6+4\sqrt{2} }=17-12\sqrt{2}}
6+4
2
6−4
2
=17−12
2
Given: \frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}
6+4
2
6−4
2
Now, we need to rationalise the above fraction.
To rationalise \frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}
6+4
2
6−4
2
, multiply the numerator by 6-4 \sqrt{2}6−4
2
and denominator by 6-4 \sqrt{2}6−4
2
Now, the whole numbers are multiplied with the whole numbers in the numerator.
Now, we get, \frac{6-4 \sqrt{2}}{6+4 \sqrt{2}} \times \frac{6-4 \sqrt{2}}{6-4 \sqrt{2}}=\frac{36+32-48 \sqrt{2}}{36-32}
6+4
2
6−4
2
×
6−4
2
6−4
2
=
36−32
36+32−48
2
On simplifying the above step, we get = \frac{68-48 \sqrt{2}}{4}
4
68−48
2
On further simplification of the above step, we get the answer as,
\italic{\frac{6-4\sqrt{2}}{6+4\sqrt{2} }=17-12\sqrt{2}}\italic
6+4
2
6−4
2
=17−12
2