Math, asked by hridyanshuroy, 11 months ago

How am I supposed to do this question​

Attachments:

Answers

Answered by sanketj
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y = 2 {e}^{3x}  + 5 {e}^{4x}  =  > 12y = 24 {e}^{3x}  + 60 {e}^{4x}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{dy}{dx}  =  \frac{d(2 {e}^{3x}) }{dx}  +  \frac{d(5 {e}^{4x}) }{dx}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{dy}{dx}  = 2.3 {e}^{3x}  + 5.4 {e}^{4x}   \:  \:  \:  \:  \:  \: ...( \frac{d( {e}^{ax} )}{dx}  = a {e}^{ax}) \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{dy}{dx}  = 6 {e}^{3x} + 20 {e}^{4x} \\  \:  \:  \:  \:  \:  \:  \: 7 \frac{dy}{dx}   = 42 {e}^{3x}  + 140 {e}^{4x}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (i)  \\ \frac{d}{dx} ( \frac{dy}{dx} ) =  \frac{d(6 {e}^{3x}) }{dx}  +  \frac{d( {20e}^{4x} )}{dx}  \\   \:  \:  \:  \:  \:  \:  \:  \frac{ {d}^{2}y }{d {x}^{2} }  = 6.3 {e}^{3x}  + 20.4 {e}^{4x}  \\  \:  \:  \:  \:  \:  \:  \:  \frac{ {d}^{2}y }{d {x}^{2} }  =  {18e}^{3x}  +  {80e}^{4x}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (ii) \\  \\  \:  \:  \:  \:  \:  \frac{ {d}^{2} y}{dx}  - 7 \frac{dy}{dx}   + 12y  \\  = 18 {e}^{3x}  + 80 {e}^{4x}  - (42 {e}^{3x}  + 140 {e}^{4x} ) +   {24e}^{3x}  +  {60e}^{4x}  \\  = 18 {e}^{3x}  + 80 {e}^{4x}  - 42 {e}^{3x}  - 140 {e}^{4x}  + 24 {e}^{3x}  + 60 {e}^{4x}  \\  = 42 {e}^{3x }   -   {42e}^{3x}  + 140 {e}^{4x}  -  {140e}^{4x}  \\  = 0

Hence,  \frac{{d}^{2}y}{dx} - 7 \frac{dy}{dx} + 12y = 0

... Hence Proved!

Similar questions