Biology, asked by babitapandit0, 10 months ago

how are Oxygen and Carbon dioxide transported in human being​

Answers

Answered by Anonymous
2

ANSWER:-

Once the oxygen diffuses across the alveoli, it enters the bloodstream and is transported to the tissues where it is unloaded, and carbon dioxide diffuses out of the blood and into the alveoli to be expelled from the body.

hope it's helps you ✌✌

Answered by charm22
1

Answer:

The structure of any respiratory surface (lungs, gills, tracheae), maximizes its surface area to increase gas diffusion. Because of the enormous number of alveoli (approximately 300 million in each human lung), the surface area of the lung is very large (75 m2). Having such a large surface area increases the amount of gas that can diffuse into and out of the lungs. Respiratory surfaces are also extremely thin (typically only one cell thick), minimizing the distance gas must diffuse across the surface.

Basic Principles of Gas Exchange

Gas exchange during respiration occurs primarily through diffusion. Diffusion is a process in which transport is driven by a concentration gradient. Gas molecules move from a region of high concentration to a region of low concentration. Blood that is low in oxygen concentration and high in carbon dioxide concentration undergoes gas exchange with air in the lungs. The air in the lungs has a higher concentration of oxygen than that of oxygen-depleted blood and a lower concentration of carbon dioxide. This concentration gradient allows for gas exchange during respiration.

Partial pressure is a measure of the concentration of the individual components in a mixture of gases. The total pressure exerted by the mixture is the sum of the partial pressures of the components in the mixture. The rate of diffusion of a gas is proportional to its partial pressure within the total gas mixture.

Gas Pressure and Respiration

The respiratory process can be better understood by examining the properties of gases. Gases move freely, but gas particles are constantly hitting the walls of their vessel, thereby producing gas pressure.

Air is a mixture of gases, primarily nitrogen (N2; 78.6 percent), oxygen (O2; 20.9 percent), water vapor (H2O; 0.5 percent), and carbon dioxide (CO2; 0.04 percent). Each gas component of that mixture exerts a pressure. The pressure for an individual gas in the mixture is the partial pressure of that gas. Approximately 21 percent of atmospheric gas is oxygen. Carbon dioxide, however, is found in relatively small amounts, 0.04 percent. The partial pressure for oxygen is much greater than that of carbon dioxide. The partial pressure of any gas can be calculated by:

P = (Patm)— (percent content in mixture).

Patm, the atmospheric pressure, is the sum of all of the partial pressures of the atmospheric gases added together,

Patm = PN2 +PO2+ PH2O+ PCO2= 760 mm Hg

The pressure of the atmosphere at sea level is 760 mm Hg. Therefore, the partial pressure of oxygen is:

PO2= (760mm Hg) (0.21) =160 mm Hg

and for carbon dioxide:

PCO2=(760 mm Hg) (0.0004) = 0.3 mm Hg.

At high altitudes, Patm decreases but concentration does not change; the partial pressure decrease is due to the reduction in Patm.

When the air mixture reaches the lung, it has been humidified. The pressure of the water vapor in the lung does not change the pressure of the air, but it must be included in the partial pressure equation. For this calculation, the water pressure (47 mm Hg) is subtracted from the atmospheric pressure:

760 mm Hg – 47 mm Hg =713 mm Hg

and the partial pressure of oxygen is:

(760 mm Hg – 47 mm Hg)—0.21 = 150 mm Hg.

These pressures determine the gas exchange, or the flow of gas, in the system. Oxygen and carbon dioxide will flow according to their pressure gradient from high to low. Therefore, understanding the partial pressure of each gas will aid in understanding how gases move in the respiratory system.

Similar questions