Math, asked by TheDeadlyWasp, 1 month ago

How are the signs of T-ratios determined on graph?

No spam ! :D​

Answers

Answered by Anonymous
2

\huge\fbox\pink{✯Trigonometry✯}

  • Trigonometry is a word derived from the Greek three words ,'Tri-three,gona-sides,metron-measure, it is the study of the relation between the sides and angle of a triangle.

\huge\boxed{\fcolorbox{red}{ink}{SOLUTION:}}

Cosec ,sec ,and

cot ratio

  • The multiplicative inverse or reciprocal of cosine and tangent ratio are called as 'secant and cotangent' respectively.

Thus the definition of the cosecant , secant and cotangent ratio of acute angle theta are as follows:

  • refer the attachment for this

\huge\boxed{\dag\sf\red{ANSWER}\dag}

The table of the value of Trigonometric ratio of angle 0°,30°,45°,60°,90°.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\huge\boxed{\dag\sf\red{Thanks}\dag}

Attachments:
Answered by sorrySoSORRY
3

N᭄SOLUTION᭄

By  \: Pythagoras, \displaystyle{r}=\sqrt{{{x}^{2}+{y}^{2}}}r=x2+y2. Then \:  the \:  ratios  \: are:</p><p></p><p>\displaystyle \sin{\theta}=\frac{y}{{r}}sinθ=ry</p><p></p><p>\displaystyle \cos{\theta}=\frac{x}{{r}}cosθ=rx</p><p></p><p>\displaystyle \tan{\theta}=\frac{y}{{x}}tanθ=xy</p><p></p><p>\displaystyle \csc{\theta}=\frac{r}{{y}}cscθ=yr</p><p></p><p>\displaystyle \sec{\theta}=\frac{r}{{x}}secθ=xr</p><p></p><p>\displaystyle \cot{\theta}=\frac{x}{{y}}cotθ=yx</p><p></p><p></p><h3>

TrigonometryTable

∠A

sinA

cosA

tanA

cosecA

secA

cotA

0

Step-by-step explanation:

ℒℴνℯly

queen

Attachments:
Similar questions