Math, asked by Rudragb1324, 7 hours ago

how are you
xxsinglequeenxX28
harder this time
solve this question and get 100 points
100 points for this simple question
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+49+50​​+51+52+53+54+55+56+57+58+59+60+61+62+63+64+65+66+67+68+69+70+71+72+73+74+75+76+77+78+79+80+81+82+83+84+85+86+87+88!89+90+91+92+93+94+95+96+97+98+99+100

harder this time​

Answers

Answered by XxSweetiePiexX
2

Answer:

Hope it helps you pls follow, like, mark as brainlist pls ‼️❤️❣️

Step-by-step explanation:

5050

The sum of all natural numbers from 1 to 100 is 5050.

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:1 + 2 + 3 +  -  -  -  + 100

Its an AP series with

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:d = 1

\rm :\longmapsto\: {n}^{th} \: term  = 100

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:100 = 1 + (n - 1) \times 1

\rm :\longmapsto\:100 = 1 + n - 1

\bf\implies \:n = 100

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm :\longmapsto\:S_n = \dfrac{100}{2} \bigg(2 \times 1 + (100 - 1) \times 1\bigg)

\rm :\longmapsto\:S_n =50 \times \bigg(2 + 100 - 1\bigg)

\rm :\longmapsto\:S_n =50 \times \bigg(101\bigg)

\bf\implies \:S_n = 5050

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut

Sum of first n natural numbers is

\boxed{\tt{ \displaystyle\sum_{n=1}^n\rm n \:  =  \:  \frac{n(n \:  +  \: 1)}{2} \: }}

So,

\red{\rm :\longmapsto\:\displaystyle\sum_{n=1}^{100}\rm n =  \frac{100(100 + 1)}{2} = 5050}

Similar questions