How black hole will be formed explain it? and what is gamma ray burst.
mesaravi289p61smz:
when a huge sun bigger than our sun.uses its last fuel . the sun will in its own gravity and boom.it again falls into its own gravity it compress there you go baby black hole
Answers
Answered by
1
In gamma-ray astronomy, gamma-ray bursts(GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several hours.[2][3][4] After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[5]
The intense radiation of most observed GRBs is thought to be released during a supernovaor hypernova as a rapidly rotating, high-mass star collapses to form a neutron star, quark star, or black hole. A subclass of GRBs (the "short" bursts) appear to originate from a different process: the merger of binaryneutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.[6]
The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime)[7] and extremely rare (a few per galaxy per million years[8]). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.[9]
GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests. Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars.[10] Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.
-source wikipedia...
The intense radiation of most observed GRBs is thought to be released during a supernovaor hypernova as a rapidly rotating, high-mass star collapses to form a neutron star, quark star, or black hole. A subclass of GRBs (the "short" bursts) appear to originate from a different process: the merger of binaryneutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.[6]
The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime)[7] and extremely rare (a few per galaxy per million years[8]). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.[9]
GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests. Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars.[10] Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.
-source wikipedia...
Answered by
0
gamma-ray bursts(GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.Bursts can last from ten milliseconds to several hours.
Hope it helps you
Hope it helps you
Similar questions