how can b construct a Abc m<A=45,M < B=60,M<C=75
Answers
Answered by
0
Answer:
IT IS NOT POSSIBLE
Step-by-step explanation:
Answered by
5
AD is perpendicular to BC. & CF is perpendicular to AB. < DAB = 30° .
Since < A = 45° => < ACF = 45°
=> AF = CF = a
In triangle AFO
cos 30° = a/AO
=> √3/2 = a/ AO
=> AO = 2a/√3 …………..(1)
In triangle CFB
tan 60° = CF/FB
=> √3 = a/ FB
=> FB = a/√3 ………………(2)
So, AB = a + a/√3
=> AB = (√3 + 1)a / √3 ……………..(3)
Now, in trisngle ADB
Sin60° = AD/AB
=> √3/2 = AD / { (√3+1)a /√3} ( by eq 3)
=> 2 AD = (√3+1)a
=> AD = (√3+1)a /2 ………………(4)
=> OD = AD - AO = eq(4) - eq(1)
=> OD = (√3+1)a /2 - 2a/√3
=> OD = (3a + √3a - 4a)/2√3
=> OD = (√3a - a)/2√3 ………….(5)
Now, eq (1) ÷ eq(5)
=> AO/OD = (2a/√3) x ( 2√3/ √3a- a )
=> AO /OD = 4/(√3–1)
=> AO/OD = 4(√3+1) / 2
=> AO/OD = 2(√3+1) /2
So, orthocentre O divides altitude AD in the following ratio
=> AO/OD = 2(√3+1) : 1
OR = approximately 5.5 :1
Attachments:
Similar questions