How can I COMPLETELY solve this system: sec(a) + cosec(b) = 2 sin(b) + cos(a) =
Answers
Answer:∫ csc[(3x)/2] sec(x/2) dx =
let's write it as:
∫ {1 /sin[(3x)/2]} [1 /cos(x/2)] dx =
∫ {1 /{sin[(3x)/2] cos(x/2)} } dx =
let's apply the product-to-sum formula sin α cosβ = [sin(α + β) + sin(α - β)] /2:
∫ {1 /{{sin{[(3x)/2] + (x/2)} + sin{[(3x)/2] - (x/2)}} /2} } dx =
∫ {1 /{{sin[(4x)/2] + sin[(2x)/2]} /2} } dx =
∫ {2 /[sin(2x) + sinx]} dx =
(applying the double-angle identity sin(2x) = 2sinx cosx)
∫ [2 /(2sinx cosx + sinx)] dx =
(factoring sinx out of the denominator)
∫ {2 /[sinx (2cosx + 1)]} dx =
let's divide and multiply by sinx:
∫ {2 /[sin²x (2cosx + 1)]} sinx dx =
let's replace sin²x with 1 - cos²x:
∫ {2 /[(1 - cos²x)(2cosx + 1)]} sinx dx =
let's factor the denominator completely:
∫ {2 /[(1² - cos²x)(2cosx + 1)]} sinx dx =
∫ {2 /[(1 + cosx)(1 - cosx)(2cosx + 1)]} sinx dx =
let:
cosx = u
let's differentiate both sides:
d(cosx) = du
- sinx dx = du
sinx dx = - du
yielding, by substitution:
∫ {2 /[(1 + cosx)(1 - cosx)(2cosx + 1)]} sinx dx = ∫ {2 /[(1 + u)(1 - u)(2u +
1)]} (- du) =
(adjusting signs)
∫ {2 /[- (1 + u)(1 - u)(2u + 1)]} du =
∫ {2 /{(1 + u)[- (1 - u)] (2u + 1)} } du =
∫ {2 /[(u + 1)(u - 1)(2u + 1)]} du =
let's decompose into partial fractions:
2 /[(u + 1)(u - 1)(2u + 1)] = A/(u + 1) + B/(u - 1) + C/(2u + 1)
(letting (u + 1)(u - 1)(2u + 1) be the common denominator)
2 /[(u + 1)(u - 1)(2u + 1)] = [A(u - 1)(2u + 1) + B(u + 1)(2u + 1) + C(u + 1)(u -
1)] /[(u + 1)(u - 1)(2u + 1)]
(equating numerators)
2 = A(u - 1)(2u + 1) + B(u + 1)(2u + 1) + C(u + 1)(u - 1)
2 = A(2u² + u - 2u - 1) + B(2u² + u + 2u + 1) + C(u² - 1²)
2 = A(2u² - u - 1) + B(2u² + 3u + 1) + C(u² - 1)
2 = 2Au² - Au - A + 2Bu² + 3Bu + B + Cu² - C
2 = (2A + 2B + C)u² + (- A + 3B)u + (- A + B - C)
(equating numerators)
2A + 2B + C = 0
- A + 3B = 0
- A + B - C = 2
2(3B) + 2B + C = 0
- A = - 3B → A = 3B
- (3B) + B - C = 2
6B + 2B + C = 0
A = 3B
- 2B - C = 2
8B + C = 0
A = 3B
- 2B - C = 2
C = - 8B
A = 3B
- 2B - (- 8B) = 2
C = - 8B
A = 3B
- 2B + 8B = 2
C = - 8B
A = 3B
6B = 2
C = - 8B = - 8(1/3) = - 8/3
A = 3B = 3(1/3) = 1
B = 2/6 = 1/3
yielding:
2 /[(u + 1)(u - 1)(2u + 1)] = A/(u + 1) + B/(u - 1) + C/(2u + 1) = 1/(u + 1) +
(1/3)/(u - 1) + (- 8/3)/(2u + 1)
then the integral becomes:
∫ {2 /[(1 + u)(u - 1)(2u + 1)]} du = ∫ {[1 /(u + 1)] + [(1/3) /(u - 1)] + [(- 8/3) /(2u + 1)]} du =
(splitting into three integrals and factoring constants out)
∫ [1 /(u + 1)] du + (1/3) ∫ [1 /(u - 1)] du - (8/3) ∫ [1 /(2u + 1)] du =
(dividing and multiplying the last integral by 2 to make the numerator the derivative of the denominator)
∫ [1 /(u + 1)] du + (1/3) ∫ [1 /(u - 1)] du - (8/3)(1/2) ∫ 2 du /(2u + 1) =
ln |u + 1| + (1/3) ln |u - 1| - (4/3) ∫ d(2u + 1) /(2u + 1) =
(by the integration rule ∫ d[f(x)] /f(x) = ln |f(x)| + C)
ln |u + 1| + (1/3) ln |u - 1| - (4/3) ln |2u + 1| + C
let's substitute back cosx for u:
ln |cosx + 1| + (1/3) ln |cosx - 1| - (4/3) ln |2cosx + 1| + C =
since - 1 < cosx < 1
explanation: in (cosx + 1) + (1/3) ln (1 - cosx) - (4/3) ln |2cosx + 1| + C
see the attachment..