Physics, asked by mohammedhafezullah, 5 months ago

how can we find out mass of the earth​

Answers

Answered by SpideyySense
0

Answer:

Because we know the radius of the Earth, we can use the Law of Universal Gravitation to calculate the mass of the Earth in terms of the gravitational force on an object (its weight) at the Earth's surface, using the radius of the Earth as the distance.

good question

Answered by khushi16111
0

Answer:

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.F = Gm1m2/r2 = ma

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.F = Gm1m2/r2 = maGm/r2 = g

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.F = Gm1m2/r2 = maGm/r2 = gm = gr2/G

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.F = Gm1m2/r2 = maGm/r2 = gm = gr2/Gm = (9.8 m/s2)(6.37 × 106 m)2/(6.673 × 10−11 Nm2/kg2)

The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet. We set this equal to the fundamental equation, force (F) equals mass (m) multiplied by acceleration (a). We know that the acceleration due to gravity is equal to 9.8 m/s2, the Gravitational constant (G) is 6.673 × 10−11 Nm2/kg2, the radius of the Earth is 6.37 × 106 m, and mass cancels out. When we rearrange the equation and plug all the numbers in, we find that the mass of the Earth is 5.96 × 1024 kg.F = Gm1m2/r2 = maGm/r2 = gm = gr2/Gm = (9.8 m/s2)(6.37 × 106 m)2/(6.673 × 10−11 Nm2/kg2)m = 5.96 × 1024 kg

Similar questions