How can we find the absolute minimum value of function x^4-x^2+2x+5?
Answers
Answered by
0
\left[x _{1}\right] = \left[ \frac{\sqrt{\left( \frac{2}{3}+\frac{61\,\sqrt[3]{2}}{3\,\sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}+\frac{\sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}{3\,\sqrt[3]{2}}\right) }}{2}+\frac{ - \sqrt{\left( \frac{4}{3}+\frac{\left( -61\right) \,\sqrt[3]{2}}{3\,\sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}+\frac{ - \sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}{3\,\sqrt[3]{2}}+\frac{-4}{\sqrt{\left( \frac{2}{3}+\frac{61\,\sqrt[3]{2}}{3\,\sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}+\frac{\sqrt[3]{\left( 466+\left( 36\,i \right) \,\sqrt{533}\right) }}{3\,\sqrt[3]{2}}\right) }}\right) }}{2}\right][x1]=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2√(32+33√(466+(36i)√533)613√2+33√23√(466+(36i)√533))+2−⎷⎝⎜⎜⎜⎜⎛34+33√(466+(36i)√533)(−61)3√2+33√2−3√(466+(36i)√533)+√(32+33√(466+(36i)√533)613√2+33√23√(466+(36i)√533))−4⎠⎟⎟⎟⎟⎞⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
totally answer. Algebra functional value
totally answer. Algebra functional value
Similar questions