how can we stop carbon dioxide gas
Answers
Answer:
we can stop the releasing CO2 gas by
- afforestation
- using eco fuels
- reduce the use of vehicles
- do not cut the tress
- stop the increasing rate of global warming
- usage of eco friendly materials.
.......Hope this will help you.....
Answer:
Here is your Answer!!!
Explanation:
Here are six options for removing carbon from the atmosphere:
1) Forests
Photosynthesis removes carbon dioxide naturally—and trees are especially good at storing carbon removed from the atmosphere by photosynthesis. Expanding forests, restoring existing forests and managing forests to encourage more carbon uptake can leverage the power of photosynthesis to convert carbon dioxide in the air into carbon stored in wood and soils. Scientists say the carbon-removal potential for these measures in the United States alone is hundreds of millions of metric tons per year. For example, every acre of land restored to temperate forest can sequester about 3 metric tons of CO2 per year. These approaches can be relatively inexpensive (generally less than $50 per metric ton) and yield cleaner water and air in the process.
2) Farms
Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive—more than 900 million acres in the United States alone—even small increases in soil carbon per acre, if it can be done, could be impactful. Building soil carbon is good for farmers and ranchers, too, as it can increase soil health and crop yields. Integrating trees on farms can also remove carbon while providing other benefits like shade and forage for livestock.
3) Bio-energy with Carbon Capture and Storage (BECCS)
BECCS is another way to use photosynthesis to combat climate change, but it is far more complicated than planting trees or managing soils—and it doesn’t always work for the climate. BECCS is the process of using biomass for energy in the industrial, power or transportation sectors; capturing the embodied carbon before it is released back to the atmosphere; and then storing it either underground or in long-lived products like concrete. If BECCS causes more biomass to grow than would otherwise, or more carbon to be stored where it would otherwise be released back into the atmosphere, it can provide net carbon removal.
4) Direct Air Capture
Direct air capture is the process of chemically scrubbing carbon dioxide directly from the ambient air, and then storing it either underground or in long-lived products. This new technology is not unlike the carbon capture and storage technology for various emissions sources like power plants and industrial facilities. The difference is that direct air capture removes carbon from the atmosphere instead of reducing emissions. It is relatively straightforward to measure and account for the climate benefits of direct air capture, and its potential scale of deployment is enormous. But the technology remains costly and energy-intensive.
5) Seawater Capture
Seawater capture is akin to direct air capture, except CO2 is extracted from seawater instead of air. By reducing CO2 concentration in the ocean, the water then draws in more carbon from the air to regain balance. Seawater is a more concentrated solution of CO2 than the ambient air, which means less work is required to separate it out than in direct air capture. But seawater is also considerably heavier than air, which means more work to move it through the system. Seawater capture will also have to grapple with the added complexities of technology deployment in harsh maritime environments.
The U.S. Navy has already developed a prototype seawater capture device. Because CO2 can be converted to fuel by adding energy (and some Navy vessels tend to have spare nuclear reactors on board), such a technology could allow vessels to create their own fuel and avoid having to stop to refuel.
6) Enhanced Weathering
Some minerals naturally react with CO2, turning carbon from a gas into a solid. The process is commonly referred to as “weathering,” and it typically happens very slowly—on a geological timescale. But scientists are figuring out how to speed up the process, especially by enhancing the exposure of these minerals to CO2 in the air or ocean.
The Future of Carbon Removal
We don’t know today which of these strategies can provide the most large-scale carbon removal in the future, and which may ultimately prove less useful. Each approach offers both promise and challenges. But what we do know is that if we are to avoid dangerous levels of global warming, capturing and storing carbon already in the air must be part of our climate strategy in the United States and around the world.