How can you explain: sin²∅+cos²∅=c²/b²+a²/b²=c²+a²/b²= b²/b²=1
Answers
Step-by-step explanation:
Given that,
\rm \:\angle SPR = 25\degree∠SPR=25°
\rm \:\angle PRS = 60\degree∠PRS=60°
In \triangle△ PRS,
We know, sum of all interior angles of a triangle is supplementary.
So, using this
\begin{gathered}\rm \: \angle PRS + \angle SPR + \angle RSP = 180\degree \\ \end{gathered}
∠PRS+∠SPR+∠RSP=180°
\begin{gathered}\rm \: 60\degree + 25\degree + \angle RSP = 180\degree \\ \end{gathered}
60°+25°+∠RSP=180°
\begin{gathered}\rm \: 85\degree + \angle RSP = 180\degree \\ \end{gathered}
85°+∠RSP=180°
\begin{gathered}\rm \: \angle RSP = 180\degree - 85\degree \\ \end{gathered}
∠RSP=180°−85°
\begin{gathered}\rm \: \bf\implies \:\angle RSP = 95\degree \\ \end{gathered}
⟹∠RSP=95°
Now, PQRS is a cyclic quadrilateral.
We know, sum of the opposite angles of a cyclic quadrilateral is supplementary.
So, using this, we get
\begin{gathered}\rm \: \angle RSP + \angle RQP = 180\degree \\ \end{gathered}
∠RSP+∠RQP=180°
\begin{gathered}\rm \: 95\degree + \angle RQP = 180\degree \\ \end{gathered}
95°+∠RQP=180°
\begin{gathered}\rm \: \angle RQP = 180\degree - 95\degree \\ \end{gathered}
∠RQP=180°−95°
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:\bf \: \angle RQP = 85\degree \: \: }} \\ \end{gathered}
⟹
∠RQP=85°