How do I answer this question?
Attachments:
Answers
Answered by
2
let a be any arbitrary integer and
b = 3.
we know,(Euclid Algorithm)
a = bq + r , 0 < r< b.
Now,
a = 3q + r , 0 < r < 3.
The possibility of remainder = 0,1 or 2
=========================
a = 3q
a2 = 9q2
3 . ( 3q2)
3m (here, m = 3q²)
a = 3q +1
a2 = ( 3q +1 )2
9q2 + 6q +1
3 (3q2 +2q ) + 1
3m +1 (where m = 3q2 + 2q )
a = 3q + 2
a2 = (3q +2 )2
9q2 + 12q + 4
9q2 +12q + 3 + 1
3 ( 3q2 + 4q + 1 ) + 1
3m + 1 where m = 3q2 + 4q + 1)
Thus,
3m and 3m+1 are Square of any positive Integer
Thanks!!
b = 3.
we know,(Euclid Algorithm)
a = bq + r , 0 < r< b.
Now,
a = 3q + r , 0 < r < 3.
The possibility of remainder = 0,1 or 2
=========================
a = 3q
a2 = 9q2
3 . ( 3q2)
3m (here, m = 3q²)
a = 3q +1
a2 = ( 3q +1 )2
9q2 + 6q +1
3 (3q2 +2q ) + 1
3m +1 (where m = 3q2 + 2q )
a = 3q + 2
a2 = (3q +2 )2
9q2 + 12q + 4
9q2 +12q + 3 + 1
3 ( 3q2 + 4q + 1 ) + 1
3m + 1 where m = 3q2 + 4q + 1)
Thus,
3m and 3m+1 are Square of any positive Integer
Thanks!!
Answered by
0
Step-by-step explanation:
Let a be any +ve integer and b will take the form 3q and 3q+1
Case i) when a=3q
Squaring on both sides
a2= 3q2
= 3q×3q
=3(3q2) [3q square]
=3m where m = 3q2
Case ii) when a= 3q+1
a2=(3q+1)2 [ 3q+1 the whole square]
=3q2+2×3q×1+(1)2 [3q the whole square and 1 the whole square]
=9q2 +6q+1
=3(3q2+2q) +1=3m+1
Where m=3q2+2q
Please mark as Brainliest answer
Similar questions