Math, asked by Honeykittypie, 1 month ago

How do I do this? :////​

Attachments:

Answers

Answered by anindyaadhikari13
10

\textsf{\large{\underline{Solution}:}}

Let the number be multiplied be x.

Therefore, according to the given conditions:

 \rm:\longmapsto {3}^{ - 3}  \times x = 4

We know that:

 \rm:\longmapsto  {x}^{ - a}  =  \dfrac{1}{ {x}^{a} }

Therefore:

 \rm:\longmapsto \dfrac{1}{ {3}^{3} } \times x = 4

 \rm:\longmapsto \dfrac{x}{27 } = 4

Multiplying both sides by 27, we get:

 \rm:\longmapsto27 \times  \dfrac{x}{27 } = 4 \times 27

 \rm:\longmapsto x = 4 \times 27

 \rm:\longmapsto x = 108

★ So, 108 must be multiplied to get 4.

\textsf{\large{\underline{Verification}:}}

Put x = 108, we get:

 \rm =  {3}^{ - 3}  \times 108

 \rm =  \dfrac{1}{27}  \times 108

 \rm =  \dfrac{1}{27}  \times 27 \times 4

 \rm =4

Hence, our answer is correct (Verified)

\textsf{\large{\underline{Learn More}:}}

Laws Of Exponents: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Answered by NITESH761
3

Step-by-step explanation:

let the number be x,

\sf (3^{-3})(x)=4

\sf \bigg( \dfrac{1}{3^3}\bigg)(x)=4

\sf \bigg( \dfrac{x}{27}\bigg)=4

\sf x=4×27

\sf x=108

Similar questions
Math, 9 months ago