How do I integrate f(x)=sec(x)4−3tan(x)?
Anonymous:
___k off
Answers
Answered by
3
Answer:
15ln(tan(x2)+2)−15ln(2tan(x2)−1)+C
Explanation:
∫secx4−3tanx⋅dx
=∫dx4cosx−3sinx
After using y=tan(x2), dx=2dyy2+1, cosx=1−y2y2+1 and sinx=2yy2+1transforms, this integral became
∫2dyy2+14⋅1−y2y2+1−3⋅2yy2+1
=∫2dyy2+14−6y−4y2y2^1
=-∫dy2y2+3y−2
=-∫dy(y+2)⋅(2y−1)
=-15∫5dy(y+2)⋅(2y−1)
=-15∫(2y+4)⋅dy(y+2)(2y−1)+15∫(2y−1)⋅dy(y+2)(2y−1)
=15∫dyy+2−25∫dy2y−1
=15ln(y+2)−15ln(2y−1)+C
=15ln(tan(x2)+2)−15ln(2tan(x2)−1)+C
15ln(tan(x2)+2)−15ln(2tan(x2)−1)+C
Explanation:
∫secx4−3tanx⋅dx
=∫dx4cosx−3sinx
After using y=tan(x2), dx=2dyy2+1, cosx=1−y2y2+1 and sinx=2yy2+1transforms, this integral became
∫2dyy2+14⋅1−y2y2+1−3⋅2yy2+1
=∫2dyy2+14−6y−4y2y2^1
=-∫dy2y2+3y−2
=-∫dy(y+2)⋅(2y−1)
=-15∫5dy(y+2)⋅(2y−1)
=-15∫(2y+4)⋅dy(y+2)(2y−1)+15∫(2y−1)⋅dy(y+2)(2y−1)
=15∫dyy+2−25∫dy2y−1
=15ln(y+2)−15ln(2y−1)+C
=15ln(tan(x2)+2)−15ln(2tan(x2)−1)+C
Similar questions