Math, asked by Kunalgupta1591, 1 month ago

How do I know if a matrix A,is symmetric, unitary , hermitian,skew hermitian and nonsingular

Answers

Answered by Anonymous
0

Answer:

very simple bro

Step-by-step explanation:

you just need to know two concept that are transpose and conjugate.

please first this two definition and then ask help.

I'll help you sure

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

1. Symmetric Matrix

A square matrix 'A' is said to be symmetric if and only iff A' = A.

where A' means transpose of matrix A.

For example,

If

\rm :\longmapsto\:A = \begin{gathered}\sf\left[\begin{array}{ccc}1&-1&2\\ - 1&4&-5\\2&-5&3\end{array}\right]\end{gathered}

then

\rm :\longmapsto\: {A}^{T}  \: or \:  {A}^{'}  = \begin{gathered}\sf\left[\begin{array}{ccc}1&-1&2\\ - 1&4&-5\\2&-5&3\end{array}\right]\end{gathered} = A

2. Hermitian Matrix

A square matrix 'A' is said to be Hermitian iff

\boxed{ \sf{ \: {A}^{\theta} = A}}

\rm :\longmapsto\:where \:  {A}^{ \theta} \: means \: transpose \: conjugate.

For example :-

If

\rm :\longmapsto\:A =  \begin{gathered}\sf \left[\begin{array}{ccc}1&-i&1 - i\\i&4&1 + i\\1 + i&1 - i&3\end{array}\right]\end{gathered}

then

\rm :\longmapsto\: {A}^{\theta}  =  \begin{gathered}\sf \left[\begin{array}{ccc}1&-i&1 - i\\i&4&1 + i\\1 + i&1 - i&3\end{array}\right]\end{gathered} = A

3. Skew - Hermitian Matrix

A square matrix A is said to be skew - hermitian iff

\boxed{ \sf{ \: {A}^{\theta} =  -  \: A}}

Remark :- The main diagonal elements of skew - hermitian matrix are always 0 or purely imaginary.

For example

If

\rm :\longmapsto\:A =  \begin{gathered}\sf \left[\begin{array}{ccc}0&i&2 - i\\ - i&0&1 - i\\ - 2 + i& - 1 +  i&0\end{array}\right]\end{gathered}

then

\bf\implies \: {A}^{\theta} =  - A

For example

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3i&1 + i \\  - 1 + i&2i \end{matrix} \bigg]

4. Unitary matrix

A square matrix A said to be Unitary matrix iff

\rm :\longmapsto\:A {A}^{\theta} =  {A}^{\theta}A = I

For example

If

\rm :\longmapsto\:A =  \bigg[ \begin{matrix}\dfrac{1}{ \sqrt{2} } & \dfrac{1}{ \sqrt{2} }i  \\  \dfrac{1}{ \sqrt{2} }& -  \: \dfrac{1}{ \sqrt{2} }i \end{matrix} \bigg]

Now,

\rm :\longmapsto\: {A}^{\theta} A = \bigg[ \begin{matrix}\dfrac{1}{ \sqrt{2} } & - \dfrac{1}{ \sqrt{2} }i  \\  \dfrac{1}{ \sqrt{2} }&\dfrac{1}{ \sqrt{2} }i \end{matrix} \bigg] \bigg[ \begin{matrix}\dfrac{1}{ \sqrt{2} } & \dfrac{1}{ \sqrt{2} }i  \\  \dfrac{1}{ \sqrt{2} }& -  \: \dfrac{1}{ \sqrt{2} }i \end{matrix} \bigg]

\rm \:  =  \:  \:\bigg[ \begin{matrix}\dfrac{1}{2} - \dfrac{1}{2} {i}^{2}  &\dfrac{1}{2} + \dfrac{1}{2} {i}^{2}  \\ \dfrac{1}{2} + \dfrac{1}{2} {i}^{2} &\dfrac{1}{2} - \dfrac{1}{2} {i}^{2}  \end{matrix} \bigg]

\rm \:  =  \:  \:\bigg[ \begin{matrix}\dfrac{1}{2} + \dfrac{1}{2}&\dfrac{1}{2} - \dfrac{1}{2}\\ \dfrac{1}{2} - \dfrac{1}{2}&\dfrac{1}{2} + \dfrac{1}{2} \end{matrix} \bigg]

\rm \:  =  \:  \:\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]

\rm \:  =  \:  \:I

Similar questions