Math, asked by popcorndudeofficial, 1 month ago

How do this solve ∫ x+an^-1 x dx ?


Upper bound (to): 2

Lower bound (from): 0

Answers

Answered by shadowsabers03
46

Given to find,

\small\text{$\displaystyle\longrightarrow I=\int\limits_0^2x\tan^{-1}x\ dx$}

We need to perform integration by parts according to ILATE rule where,

  • I - Inverse
  • L - Logarithmic
  • A - Algebraic
  • T - Trigonometric
  • E - Exponential

Here \small\text{$\tan^{-1}x$} is an Inverse function and \small\text{$x$} is an Algebraic function, so integration by parts is done by treating \small\text{$\tan^{-1}x$} first, then \small\text{$x,$} like,

\small\text{$\displaystyle\longrightarrow I=\left[\tan^{-1}x\int x\ dx\right]_0^2-\int\limits_0^2\dfrac{1}{1+x^2}\left(\int x\ dx\right)\ dx$}

\small\text{$\displaystyle\longrightarrow I=\left[\tan^{-1}x\cdot\dfrac{x^2}{2}\right]_0^2-\int\limits_0^2\dfrac{1}{1+x^2}\cdot\dfrac{x^2}{2}\ dx$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[x^2\tan^{-1}x\right]_0^2-\dfrac{1}{2}\int\limits_0^2\dfrac{x^2}{1+x^2}\ dx$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[x^2\tan^{-1}x\right]_0^2-\dfrac{1}{2}\int\limits_0^2\dfrac{1+x^2-1}{1+x^2}\ dx$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[x^2\tan^{-1}x\right]_0^2-\dfrac{1}{2}\int\limits_0^2\left(1-\dfrac{1}{1+x^2}\right)\ dx$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[x^2\tan^{-1}x\right]_0^2-\dfrac{1}{2}\left[x-\tan^{-1}x\right]_0^2$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[x^2\tan^{-1}x-x+\tan^{-1}x\right]_0^2$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[(x^2+1)\tan^{-1}x-x\right]_0^2$}

\small\text{$\displaystyle\longrightarrow I=\dfrac{1}{2}\left[(2^2+1)\tan^{-1}2-2\right]-\dfrac{1}{2}\left[(0^2+1)\tan^{-1}0-0\right]$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{I=\dfrac{5}{2}\tan^{-1}2-1}}$}

Answered by brainlyanswerer83
55

Hey Mate:-

Given Question:-

→ How do this solve ∫ x+an^-1 x dx ?

→ Upper bound (to): 2

→ ∫

→ Lower bound (from): 0

Solution:-

→ Kindly Refer to the attachment , done by me.

Attachments:
Similar questions