Math, asked by monjyotiboro, 6 hours ago

How do u integrate dx/sec^2(tan^{-1} x)​

Answers

Answered by SparklingBoy
30

 \red{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:   \: TO \:  \:  CALCULATE \:  \:  \maltese }}}}}

 \sf  \int \frac{dx}{ {sec}^{2}(tan  {}^{ - 1} x)}  \\

 \green{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  KEY \:  \:  POINT  \:  \: \maltese }}}}}

  \large\mathfrak{Express \:  \:  sec^2 \text{}(tan^{-1} \text{x })\:  \:  in \:  \:  } \\    \large\mathfrak{terms \:  \: of  \:  \:  \text{x  }\:  \: onl  \text{y} \:  \:   \text{And } } \\ \large  \mathfrak{ solve \:  \: after \:  \:  Expressing}

 \color{magenta}\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \: REQUIRED \:  \:  INFO \:  \:   \maltese }}}} \\  \\  \bigstar \: \bf  {sec}^{2}  \theta = 1 +  {tan}^{2}  \theta \\  \\  \bf \bigstar \:  \int \frac{dx}{1 +  {x}^{2} }  =  {tan}^{ - 1} x + C

 \purple{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  SOLUTION \:  \:  \maltese }}}}}

   \blue{\boxed{ \boxed{ \bigstar \bf Expressing  \: in \: terms \: of \: x }}}

  \huge\mathfrak{ \text{L}et} \\  \\ \bf  {tan}^{ - 1} x =  \alpha  \implies  \sf\tan\alpha  = x \\  \\ SO\\  \\   \sf{sec}^{2} ( {tan}^{ - 1} x) =  {sec}^{2}  \alpha  \\  \\  = \sf 1 +  {tan}^{2}  \alpha  \\  \\  =  \bf 1 +  {x}^{2}\\ \implies \green{ \boxed{ \boxed{\bf{sec}^{2} ( {tan}^{ - 1} x) =1 +  {x}^{2} }}}\:\:\: ...(i)

  \huge\mathfrak{ \text{N}o \sf{w}} \\  \\  \sf \int \frac{dx}{ {sec}^{2} ( {} tan {}^{ - 1}x) }  \\ \\=  \sf \int \frac{dx}{1 +  {x}^{2} }\:\:\:\:\bf[using\: Eq^n (i)] \\ \\ =    \bf{tan}^{ - 1} x + C

Which is the required Answer

Answered by BrainlyIshu
7

Question:

 \huge \int \frac{dx}{ {sec}^{2}( {tan}^{ - 1} x) }

Useful Formulas:

  \bf1) \:  \:  \sec {}^{2} \alpha =   1 +  { \tan}^{2}  \alpha  \\  \\  \bf2) \:  \: \int \frac{dx}{1 +  {x}^{2} }  = tan {}^{ - 1} x + c

 {\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \bigstar  \:   SOLUTION  }}}}}

Firstly,

Let

 {tan}^{ - 1} x =  \theta  \implies  \tan\theta = x \\  \\ \Large Now,\\  \\   {sec}^{2} ( {tan}^{ - 1} x) =  {sec}^{2}  \theta\\  \\  = 1 +  {tan}^{2}  \theta \\  \\  =   1 +  {x}^{2}

  \huge\mathfrak{ Finall\sf{y}} \\  \\  \int \frac{dx}{ {sec}^{2} ( {} tan {}^{ - 1}x) }\\\\  =   \int \frac{dx}{1 +  {x}^{2} }  \\  \\  =    \bf{tan}^{ - 1} x + C

Similar questions